A YOLOv8-based object detection system that supports inference on images, videos, and live camera feeds with optional server integration for real-time alerts.
- 🎯 Object Detection - Detect objects using custom-trained YOLO models
- 📊 Congestion Analysis - Calculate real-time congestion levels
- 🎥 Multi-source Input - Process images, videos, folders, or live camera feeds
- 🖥️ Server Integration - Send detection alerts to a backend server
seds/
├── inference.py # Main CLI script for batch inference
├── client.py # Real-time detection client with server integration
├── congestion.py # Congestion analysis module
├── yolo.py # Core YOLO utility functions
├── config.py # Model configuration settings
├── model_info.py # Utility to inspect model details
├── requirements.txt # Python dependencies
├── your_model.pt # Your trained YOLO model
├── test_images/ # Sample test images
└── output/ # Inference results output directory
- Python 3.8+
- CUDA-compatible GPU (optional, for faster inference)
# Clone the repository
git clone https://github.com/TanmayBansode/seds.git
cd seds
# Create virtual environment (recommended)
python -m venv venv
venv\Scripts\activate # Windows
# source venv/bin/activate # Linux/macOS
# Install dependencies
pip install -r requirements.txtEdit config.py to specify your trained model:
model_file = "your_model.pt"# Single image
python inference.py -i path/to/image.jpg
# Video
python inference.py -v path/to/video.mp4
# Folder of images/videos
python inference.py -f path/to/folder/Results are saved to output/ with labeled media and detection details in .txt files.
python client.pyProcesses live camera feed with real-time detection and sends alerts to a configured server.
python congestion.py --source path/to/video.mp4Calculates congestion levels based on detected object coverage.
python model_info.pyDisplays model architecture, class names, and hyperparameters.
| File | Description |
|---|---|
inference.py |
CLI tool for batch inference on images, videos, or folders |
client.py |
Real-time detection client with server integration |
congestion.py |
Congestion level calculation and monitoring |
yolo.py |
Core YOLO functions: model loading, inference utilities |
config.py |
Configuration file specifying which model to use |
model_info.py |
Utility to inspect model details |
Images: jpg, jpeg, png, bmp, webp, tif, tiff
Videos: mp4, avi, mov, mkv, webm