Skip to content

NanoSignalingLab/photochromic-reversion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CASTA - Computational Analysis of Spatial Transient Arrests

CASTA is a Python package for analyzing spatial transient patterns in tracking data using Hidden Markov Models (HMM). It provides tools for processing and plotting trajectory data.

Installation

From PyPI (recommended)

pip install casta

For development

git clone https://github.com/NanoSignalingLab/photochromic-reversion.git
cd photochromic-reversion
pip install -e .

Quick Start

Python

import casta

casta.calculate_sta(
    dir="/path/to/data/directory",
    out_dir="/path/to/output/directory",
    min_track_length=25,
    dt=0.05,
    plot=True,
    image_format="svg"
)

Command Line

# Basic usage
python -m casta /path/to/your/track/data

# With parameters
python -m casta /path/to/data --dt 0.05 --min-track-length 25

Command Line Options

Option Type Default Description
dir str required Path to directory containing input track data
--out_dir str None Path to output directory to save results, defaults to input directory
--dt float 0.05 Time step for analysis
--min-track-length int 25 Minimum track length for analysis
--plot bool False Enable additional plotting
--image-format str svg Image format (svg, tiff)

Input Data Format

CASTA includes an example file.

import os
import casta

example_df, path = casta.example.load_example_data()

current_dir = os.getcwd()

casta.calculate_sta(path, out_dir=current_dir)

Output

The analysis generates:

  • Excel files with detailed results (*_CASTA_results.xlsx)
  • Visualization plots (optional, in specified format)

Requirements

  • Python 3.10.18
  • NumPy 1.26.4
  • Pandas 2.2.3
  • Matplotlib 3.10.0
  • SciPy 1.15.0
  • Scikit-learn 1.6.1
  • Seaborn 0.13.2
  • hmm-learn 0.3.3
  • Shapely 2.0.6
  • xlsxwriter 3.2.3

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you use CASTA in your research, please cite:

Photochromic reversion enables long-term tracking of single molecules in living plants
Michelle von Arx, Kaltra Xhelilaj, Philip Schulz, Sven zur Oven-Krockhaus, Julien Gronnier
bioRxiv 2024.04.10.585335; doi: https://doi.org/10.1101/2024.04.10.585335

Support

For questions and support, please open an issue on the GitHub repository.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages