|
1 | 1 | #include "kernel/attributes/pad_info.h" |
2 | | -#include <iostream> |
3 | 2 | #include <numeric> |
4 | 3 |
|
5 | 4 | namespace refactor::kernel { |
| 5 | + using PI = PadInfo; |
6 | 6 |
|
7 | | - PadInfo::PadInfo( |
8 | | - PadsShape pads_, |
9 | | - PadType mode_, |
10 | | - Tensor const &x, |
11 | | - Tensor const &y, |
12 | | - bool have_value_) noexcept : rank(x.rank()), mode(mode_), pads(std::move(pads_)), wholeNDim(rank, 0), |
13 | | - partNDim(rank, 0), partStride(rank, 1), type(x.dataType), have_value(have_value_), |
14 | | - size(0) { |
15 | | - int64_t p = 1; |
16 | | - for (auto i = rank - 1; i >= 0; --i) { |
17 | | - wholeNDim[i] = y.shape[i]; |
18 | | - partNDim[i] = x.shape[i]; |
19 | | - partStride[i] = p; |
20 | | - p = p * partNDim[i]; |
| 7 | + // bool PI::Dim::operator==(Dim const &rhs) const noexcept { |
| 8 | + // return strideI == rhs.strideI && |
| 9 | + // strideO == rhs.strideO && |
| 10 | + // padStride == rhs.padStride && |
| 11 | + // dimt.dimI == rhs.dimI &&; |
| 12 | + // } |
| 13 | + // bool PI::Dim::operator!=(Dim const &rhs) const noexcept { |
| 14 | + // return !operator==(rhs); |
| 15 | + // } |
| 16 | + |
| 17 | + PI::PadInfo(decltype(dims) dims_, dim_t blockCount_, dim_t blockSize_) noexcept |
| 18 | + : dims(std::move(dims_)), blockCount(blockCount_), blockSize(blockSize_) {} |
| 19 | + |
| 20 | + PI::PadInfo(PadDimension dims_, Tensor const &input) : dims{}, blockCount(1), |
| 21 | + blockSize(input.dataType.size()) { |
| 22 | + size_t rank = input.rank(); |
| 23 | + ASSERT(dims_.size() == rank, "Invalid to get PadInfo."); |
| 24 | + |
| 25 | + // std::vector<dim_t> shape; |
| 26 | + size_t j = 0; |
| 27 | + for (auto i : range0_(rank)) { |
| 28 | + if (dims_[i].dimI != dims_[i].dimO || dims_[i].dimI != 1) { |
| 29 | + if (j < i) { dims_[j] = dims_[i]; } |
| 30 | + //shape.push_back(dims_[i].dimI); |
| 31 | + j++; |
| 32 | + } |
| 33 | + } |
| 34 | + dims_.resize(rank = j); |
| 35 | + // 合并末尾连续维度 |
| 36 | + for (auto i : range0_(rank).rev()) { |
| 37 | + if (auto d = dims_[i].dimI; d == dims_[i].dimO) { |
| 38 | + blockSize *= d; |
| 39 | + dims_.pop_back(); |
| 40 | + } else { |
| 41 | + dims.reserve(rank = dims_.size()); |
| 42 | + auto &dim = dims_[i]; |
| 43 | + if (auto times = std::gcd(std::gcd(dims_[i].dimI, dims_[i].pads), dims_[i].dimO); times > 1) { |
| 44 | + blockSize *= times; |
| 45 | + dim.dimI /= times; |
| 46 | + dim.dimO /= times; |
| 47 | + dim.pads /= times; |
| 48 | + } |
| 49 | + break; |
| 50 | + } |
| 51 | + } |
| 52 | + |
| 53 | + dim_t strideI = 1, strideO = 1; |
| 54 | + for (auto i : range0_(rank).rev()) { |
| 55 | + auto const &dim = dims_[i]; |
| 56 | + dims.push_back({ |
| 57 | + strideI, |
| 58 | + strideO, |
| 59 | + static_cast<dim_t>(dim.pads), |
| 60 | + static_cast<dim_t>(dim.dimI), |
| 61 | + }); |
| 62 | + strideI *= dim.dimI; |
| 63 | + strideO *= dim.dimO; |
| 64 | + } |
| 65 | + std::reverse(dims.begin(), dims.end()); |
| 66 | + // for (auto i : range0_(rank)) { |
| 67 | + // fmt::println("strideI = {}, strideO = {}, padS = {}, dimI = {}", dims[i].strideI, dims[i].strideO, dims[i].padS, dims[i].dimI); |
| 68 | + // } |
| 69 | + blockCount = strideO; |
| 70 | + } |
| 71 | + |
| 72 | + void PI::reform(dim_t maxblockSize) noexcept { |
| 73 | + auto blockSize_ = std::gcd(blockSize, maxblockSize); |
| 74 | + if (blockSize_ == blockSize) { return; } |
| 75 | + auto t = blockSize / blockSize_; |
| 76 | + blockCount *= t; |
| 77 | + blockSize = blockSize_; |
| 78 | + for (auto &d : dims) { |
| 79 | + d.strideI *= t; |
| 80 | + d.strideO *= t; |
| 81 | + d.padS *= t; |
| 82 | + d.dimI *= t; |
21 | 83 | } |
22 | | - size = std::accumulate(wholeNDim.begin(), wholeNDim.end(), 1, std::multiplies<>()); |
| 84 | + dims.resize(dims.size() + 1); |
| 85 | + dims.back() = {1, 1, 0, t}; |
23 | 86 | } |
24 | 87 |
|
25 | 88 | }// namespace refactor::kernel |
0 commit comments