alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84#[cfg(not(no_global_oom_handling))]
85use core::marker::Destruct;
86use core::marker::{Freeze, PhantomData};
87use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
88use core::ops::{self, Index, IndexMut, Range, RangeBounds};
89use core::ptr::{self, NonNull};
90use core::slice::{self, SliceIndex};
91use core::{fmt, hint, intrinsics, ub_checks};
92
93#[stable(feature = "extract_if", since = "1.87.0")]
94pub use self::extract_if::ExtractIf;
95use crate::alloc::{Allocator, Global};
96use crate::borrow::{Cow, ToOwned};
97use crate::boxed::Box;
98use crate::collections::TryReserveError;
99use crate::raw_vec::RawVec;
100
101mod extract_if;
102
103#[cfg(not(no_global_oom_handling))]
104#[stable(feature = "vec_splice", since = "1.21.0")]
105pub use self::splice::Splice;
106
107#[cfg(not(no_global_oom_handling))]
108mod splice;
109
110#[stable(feature = "drain", since = "1.6.0")]
111pub use self::drain::Drain;
112
113mod drain;
114
115#[cfg(not(no_global_oom_handling))]
116mod cow;
117
118#[cfg(not(no_global_oom_handling))]
119pub(crate) use self::in_place_collect::AsVecIntoIter;
120#[stable(feature = "rust1", since = "1.0.0")]
121pub use self::into_iter::IntoIter;
122
123mod into_iter;
124
125#[cfg(not(no_global_oom_handling))]
126use self::is_zero::IsZero;
127
128#[cfg(not(no_global_oom_handling))]
129mod is_zero;
130
131#[cfg(not(no_global_oom_handling))]
132mod in_place_collect;
133
134mod partial_eq;
135
136#[unstable(feature = "vec_peek_mut", issue = "122742")]
137pub use self::peek_mut::PeekMut;
138
139mod peek_mut;
140
141#[cfg(not(no_global_oom_handling))]
142use self::spec_from_elem::SpecFromElem;
143
144#[cfg(not(no_global_oom_handling))]
145mod spec_from_elem;
146
147#[cfg(not(no_global_oom_handling))]
148use self::set_len_on_drop::SetLenOnDrop;
149
150#[cfg(not(no_global_oom_handling))]
151mod set_len_on_drop;
152
153#[cfg(not(no_global_oom_handling))]
154use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
155
156#[cfg(not(no_global_oom_handling))]
157mod in_place_drop;
158
159#[cfg(not(no_global_oom_handling))]
160use self::spec_from_iter_nested::SpecFromIterNested;
161
162#[cfg(not(no_global_oom_handling))]
163mod spec_from_iter_nested;
164
165#[cfg(not(no_global_oom_handling))]
166use self::spec_from_iter::SpecFromIter;
167
168#[cfg(not(no_global_oom_handling))]
169mod spec_from_iter;
170
171#[cfg(not(no_global_oom_handling))]
172use self::spec_extend::SpecExtend;
173
174#[cfg(not(no_global_oom_handling))]
175mod spec_extend;
176
177/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
178///
179/// # Examples
180///
181/// ```
182/// let mut vec = Vec::new();
183/// vec.push(1);
184/// vec.push(2);
185///
186/// assert_eq!(vec.len(), 2);
187/// assert_eq!(vec[0], 1);
188///
189/// assert_eq!(vec.pop(), Some(2));
190/// assert_eq!(vec.len(), 1);
191///
192/// vec[0] = 7;
193/// assert_eq!(vec[0], 7);
194///
195/// vec.extend([1, 2, 3]);
196///
197/// for x in &vec {
198///     println!("{x}");
199/// }
200/// assert_eq!(vec, [7, 1, 2, 3]);
201/// ```
202///
203/// The [`vec!`] macro is provided for convenient initialization:
204///
205/// ```
206/// let mut vec1 = vec![1, 2, 3];
207/// vec1.push(4);
208/// let vec2 = Vec::from([1, 2, 3, 4]);
209/// assert_eq!(vec1, vec2);
210/// ```
211///
212/// It can also initialize each element of a `Vec<T>` with a given value.
213/// This may be more efficient than performing allocation and initialization
214/// in separate steps, especially when initializing a vector of zeros:
215///
216/// ```
217/// let vec = vec![0; 5];
218/// assert_eq!(vec, [0, 0, 0, 0, 0]);
219///
220/// // The following is equivalent, but potentially slower:
221/// let mut vec = Vec::with_capacity(5);
222/// vec.resize(5, 0);
223/// assert_eq!(vec, [0, 0, 0, 0, 0]);
224/// ```
225///
226/// For more information, see
227/// [Capacity and Reallocation](#capacity-and-reallocation).
228///
229/// Use a `Vec<T>` as an efficient stack:
230///
231/// ```
232/// let mut stack = Vec::new();
233///
234/// stack.push(1);
235/// stack.push(2);
236/// stack.push(3);
237///
238/// while let Some(top) = stack.pop() {
239///     // Prints 3, 2, 1
240///     println!("{top}");
241/// }
242/// ```
243///
244/// # Indexing
245///
246/// The `Vec` type allows access to values by index, because it implements the
247/// [`Index`] trait. An example will be more explicit:
248///
249/// ```
250/// let v = vec![0, 2, 4, 6];
251/// println!("{}", v[1]); // it will display '2'
252/// ```
253///
254/// However be careful: if you try to access an index which isn't in the `Vec`,
255/// your software will panic! You cannot do this:
256///
257/// ```should_panic
258/// let v = vec![0, 2, 4, 6];
259/// println!("{}", v[6]); // it will panic!
260/// ```
261///
262/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
263/// the `Vec`.
264///
265/// # Slicing
266///
267/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
268/// To get a [slice][prim@slice], use [`&`]. Example:
269///
270/// ```
271/// fn read_slice(slice: &[usize]) {
272///     // ...
273/// }
274///
275/// let v = vec![0, 1];
276/// read_slice(&v);
277///
278/// // ... and that's all!
279/// // you can also do it like this:
280/// let u: &[usize] = &v;
281/// // or like this:
282/// let u: &[_] = &v;
283/// ```
284///
285/// In Rust, it's more common to pass slices as arguments rather than vectors
286/// when you just want to provide read access. The same goes for [`String`] and
287/// [`&str`].
288///
289/// # Capacity and reallocation
290///
291/// The capacity of a vector is the amount of space allocated for any future
292/// elements that will be added onto the vector. This is not to be confused with
293/// the *length* of a vector, which specifies the number of actual elements
294/// within the vector. If a vector's length exceeds its capacity, its capacity
295/// will automatically be increased, but its elements will have to be
296/// reallocated.
297///
298/// For example, a vector with capacity 10 and length 0 would be an empty vector
299/// with space for 10 more elements. Pushing 10 or fewer elements onto the
300/// vector will not change its capacity or cause reallocation to occur. However,
301/// if the vector's length is increased to 11, it will have to reallocate, which
302/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
303/// whenever possible to specify how big the vector is expected to get.
304///
305/// # Guarantees
306///
307/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
308/// about its design. This ensures that it's as low-overhead as possible in
309/// the general case, and can be correctly manipulated in primitive ways
310/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
311/// If additional type parameters are added (e.g., to support custom allocators),
312/// overriding their defaults may change the behavior.
313///
314/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
315/// triplet. No more, no less. The order of these fields is completely
316/// unspecified, and you should use the appropriate methods to modify these.
317/// The pointer will never be null, so this type is null-pointer-optimized.
318///
319/// However, the pointer might not actually point to allocated memory. In particular,
320/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
321/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
322/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
323/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
324/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
325/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
326/// details are very subtle --- if you intend to allocate memory using a `Vec`
327/// and use it for something else (either to pass to unsafe code, or to build your
328/// own memory-backed collection), be sure to deallocate this memory by using
329/// `from_raw_parts` to recover the `Vec` and then dropping it.
330///
331/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
332/// (as defined by the allocator Rust is configured to use by default), and its
333/// pointer points to [`len`] initialized, contiguous elements in order (what
334/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
335/// logically uninitialized, contiguous elements.
336///
337/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
338/// visualized as below. The top part is the `Vec` struct, it contains a
339/// pointer to the head of the allocation in the heap, length and capacity.
340/// The bottom part is the allocation on the heap, a contiguous memory block.
341///
342/// ```text
343///             ptr      len  capacity
344///        +--------+--------+--------+
345///        | 0x0123 |      2 |      4 |
346///        +--------+--------+--------+
347///             |
348///             v
349/// Heap   +--------+--------+--------+--------+
350///        |    'a' |    'b' | uninit | uninit |
351///        +--------+--------+--------+--------+
352/// ```
353///
354/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
355/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
356///   layout (including the order of fields).
357///
358/// `Vec` will never perform a "small optimization" where elements are actually
359/// stored on the stack for two reasons:
360///
361/// * It would make it more difficult for unsafe code to correctly manipulate
362///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
363///   only moved, and it would be more difficult to determine if a `Vec` had
364///   actually allocated memory.
365///
366/// * It would penalize the general case, incurring an additional branch
367///   on every access.
368///
369/// `Vec` will never automatically shrink itself, even if completely empty. This
370/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
371/// and then filling it back up to the same [`len`] should incur no calls to
372/// the allocator. If you wish to free up unused memory, use
373/// [`shrink_to_fit`] or [`shrink_to`].
374///
375/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
376/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
377/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
378/// accurate, and can be relied on. It can even be used to manually free the memory
379/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
380/// when not necessary.
381///
382/// `Vec` does not guarantee any particular growth strategy when reallocating
383/// when full, nor when [`reserve`] is called. The current strategy is basic
384/// and it may prove desirable to use a non-constant growth factor. Whatever
385/// strategy is used will of course guarantee *O*(1) amortized [`push`].
386///
387/// It is guaranteed, in order to respect the intentions of the programmer, that
388/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
389/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
390/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
391/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
392///
393/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
394/// and not more than the allocated capacity.
395///
396/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
397/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
398/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
399/// `Vec` exploits this fact as much as reasonable when implementing common conversions
400/// such as [`into_boxed_slice`].
401///
402/// `Vec` will not specifically overwrite any data that is removed from it,
403/// but also won't specifically preserve it. Its uninitialized memory is
404/// scratch space that it may use however it wants. It will generally just do
405/// whatever is most efficient or otherwise easy to implement. Do not rely on
406/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
407/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
408/// first, that might not actually happen because the optimizer does not consider
409/// this a side-effect that must be preserved. There is one case which we will
410/// not break, however: using `unsafe` code to write to the excess capacity,
411/// and then increasing the length to match, is always valid.
412///
413/// Currently, `Vec` does not guarantee the order in which elements are dropped.
414/// The order has changed in the past and may change again.
415///
416/// [`get`]: slice::get
417/// [`get_mut`]: slice::get_mut
418/// [`String`]: crate::string::String
419/// [`&str`]: type@str
420/// [`shrink_to_fit`]: Vec::shrink_to_fit
421/// [`shrink_to`]: Vec::shrink_to
422/// [capacity]: Vec::capacity
423/// [`capacity`]: Vec::capacity
424/// [`Vec::capacity`]: Vec::capacity
425/// [size_of::\<T>]: size_of
426/// [len]: Vec::len
427/// [`len`]: Vec::len
428/// [`push`]: Vec::push
429/// [`insert`]: Vec::insert
430/// [`reserve`]: Vec::reserve
431/// [`Vec::with_capacity(n)`]: Vec::with_capacity
432/// [`MaybeUninit`]: core::mem::MaybeUninit
433/// [owned slice]: Box
434/// [`into_boxed_slice`]: Vec::into_boxed_slice
435#[stable(feature = "rust1", since = "1.0.0")]
436#[rustc_diagnostic_item = "Vec"]
437#[rustc_insignificant_dtor]
438#[doc(alias = "list")]
439#[doc(alias = "vector")]
440pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
441    buf: RawVec<T, A>,
442    len: usize,
443}
444
445////////////////////////////////////////////////////////////////////////////////
446// Inherent methods
447////////////////////////////////////////////////////////////////////////////////
448
449impl<T> Vec<T> {
450    /// Constructs a new, empty `Vec<T>`.
451    ///
452    /// The vector will not allocate until elements are pushed onto it.
453    ///
454    /// # Examples
455    ///
456    /// ```
457    /// # #![allow(unused_mut)]
458    /// let mut vec: Vec<i32> = Vec::new();
459    /// ```
460    #[inline]
461    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
462    #[rustc_diagnostic_item = "vec_new"]
463    #[stable(feature = "rust1", since = "1.0.0")]
464    #[must_use]
465    pub const fn new() -> Self {
466        Vec { buf: RawVec::new(), len: 0 }
467    }
468
469    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
470    ///
471    /// The vector will be able to hold at least `capacity` elements without
472    /// reallocating. This method is allowed to allocate for more elements than
473    /// `capacity`. If `capacity` is zero, the vector will not allocate.
474    ///
475    /// It is important to note that although the returned vector has the
476    /// minimum *capacity* specified, the vector will have a zero *length*. For
477    /// an explanation of the difference between length and capacity, see
478    /// *[Capacity and reallocation]*.
479    ///
480    /// If it is important to know the exact allocated capacity of a `Vec`,
481    /// always use the [`capacity`] method after construction.
482    ///
483    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
484    /// and the capacity will always be `usize::MAX`.
485    ///
486    /// [Capacity and reallocation]: #capacity-and-reallocation
487    /// [`capacity`]: Vec::capacity
488    ///
489    /// # Panics
490    ///
491    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let mut vec = Vec::with_capacity(10);
497    ///
498    /// // The vector contains no items, even though it has capacity for more
499    /// assert_eq!(vec.len(), 0);
500    /// assert!(vec.capacity() >= 10);
501    ///
502    /// // These are all done without reallocating...
503    /// for i in 0..10 {
504    ///     vec.push(i);
505    /// }
506    /// assert_eq!(vec.len(), 10);
507    /// assert!(vec.capacity() >= 10);
508    ///
509    /// // ...but this may make the vector reallocate
510    /// vec.push(11);
511    /// assert_eq!(vec.len(), 11);
512    /// assert!(vec.capacity() >= 11);
513    ///
514    /// // A vector of a zero-sized type will always over-allocate, since no
515    /// // allocation is necessary
516    /// let vec_units = Vec::<()>::with_capacity(10);
517    /// assert_eq!(vec_units.capacity(), usize::MAX);
518    /// ```
519    #[cfg(not(no_global_oom_handling))]
520    #[inline]
521    #[stable(feature = "rust1", since = "1.0.0")]
522    #[must_use]
523    #[rustc_diagnostic_item = "vec_with_capacity"]
524    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
525    pub const fn with_capacity(capacity: usize) -> Self {
526        Self::with_capacity_in(capacity, Global)
527    }
528
529    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
530    ///
531    /// The vector will be able to hold at least `capacity` elements without
532    /// reallocating. This method is allowed to allocate for more elements than
533    /// `capacity`. If `capacity` is zero, the vector will not allocate.
534    ///
535    /// # Errors
536    ///
537    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
538    /// or if the allocator reports allocation failure.
539    #[inline]
540    #[unstable(feature = "try_with_capacity", issue = "91913")]
541    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
542        Self::try_with_capacity_in(capacity, Global)
543    }
544
545    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
546    ///
547    /// # Safety
548    ///
549    /// This is highly unsafe, due to the number of invariants that aren't
550    /// checked:
551    ///
552    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
553    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
554    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
555    ///   only be non-null and aligned.
556    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
557    ///   if the pointer is required to be allocated.
558    ///   (`T` having a less strict alignment is not sufficient, the alignment really
559    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
560    ///   allocated and deallocated with the same layout.)
561    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
562    ///   nonzero, needs to be the same size as the pointer was allocated with.
563    ///   (Because similar to alignment, [`dealloc`] must be called with the same
564    ///   layout `size`.)
565    /// * `length` needs to be less than or equal to `capacity`.
566    /// * The first `length` values must be properly initialized values of type `T`.
567    /// * `capacity` needs to be the capacity that the pointer was allocated with,
568    ///   if the pointer is required to be allocated.
569    /// * The allocated size in bytes must be no larger than `isize::MAX`.
570    ///   See the safety documentation of [`pointer::offset`].
571    ///
572    /// These requirements are always upheld by any `ptr` that has been allocated
573    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
574    /// upheld.
575    ///
576    /// Violating these may cause problems like corrupting the allocator's
577    /// internal data structures. For example it is normally **not** safe
578    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
579    /// `size_t`, doing so is only safe if the array was initially allocated by
580    /// a `Vec` or `String`.
581    /// It's also not safe to build one from a `Vec<u16>` and its length, because
582    /// the allocator cares about the alignment, and these two types have different
583    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
584    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
585    /// these issues, it is often preferable to do casting/transmuting using
586    /// [`slice::from_raw_parts`] instead.
587    ///
588    /// The ownership of `ptr` is effectively transferred to the
589    /// `Vec<T>` which may then deallocate, reallocate or change the
590    /// contents of memory pointed to by the pointer at will. Ensure
591    /// that nothing else uses the pointer after calling this
592    /// function.
593    ///
594    /// [`String`]: crate::string::String
595    /// [`alloc::alloc`]: crate::alloc::alloc
596    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
597    ///
598    /// # Examples
599    ///
600    /// ```
601    /// use std::ptr;
602    ///
603    /// let v = vec![1, 2, 3];
604    ///
605    /// // Deconstruct the vector into parts.
606    /// let (p, len, cap) = v.into_raw_parts();
607    ///
608    /// unsafe {
609    ///     // Overwrite memory with 4, 5, 6
610    ///     for i in 0..len {
611    ///         ptr::write(p.add(i), 4 + i);
612    ///     }
613    ///
614    ///     // Put everything back together into a Vec
615    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
616    ///     assert_eq!(rebuilt, [4, 5, 6]);
617    /// }
618    /// ```
619    ///
620    /// Using memory that was allocated elsewhere:
621    ///
622    /// ```rust
623    /// use std::alloc::{alloc, Layout};
624    ///
625    /// fn main() {
626    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
627    ///
628    ///     let vec = unsafe {
629    ///         let mem = alloc(layout).cast::<u32>();
630    ///         if mem.is_null() {
631    ///             return;
632    ///         }
633    ///
634    ///         mem.write(1_000_000);
635    ///
636    ///         Vec::from_raw_parts(mem, 1, 16)
637    ///     };
638    ///
639    ///     assert_eq!(vec, &[1_000_000]);
640    ///     assert_eq!(vec.capacity(), 16);
641    /// }
642    /// ```
643    #[inline]
644    #[stable(feature = "rust1", since = "1.0.0")]
645    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
646        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
647    }
648
649    #[doc(alias = "from_non_null_parts")]
650    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
651    ///
652    /// # Safety
653    ///
654    /// This is highly unsafe, due to the number of invariants that aren't
655    /// checked:
656    ///
657    /// * `ptr` must have been allocated using the global allocator, such as via
658    ///   the [`alloc::alloc`] function.
659    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
660    ///   (`T` having a less strict alignment is not sufficient, the alignment really
661    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
662    ///   allocated and deallocated with the same layout.)
663    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
664    ///   to be the same size as the pointer was allocated with. (Because similar to
665    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
666    /// * `length` needs to be less than or equal to `capacity`.
667    /// * The first `length` values must be properly initialized values of type `T`.
668    /// * `capacity` needs to be the capacity that the pointer was allocated with.
669    /// * The allocated size in bytes must be no larger than `isize::MAX`.
670    ///   See the safety documentation of [`pointer::offset`].
671    ///
672    /// These requirements are always upheld by any `ptr` that has been allocated
673    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
674    /// upheld.
675    ///
676    /// Violating these may cause problems like corrupting the allocator's
677    /// internal data structures. For example it is normally **not** safe
678    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
679    /// `size_t`, doing so is only safe if the array was initially allocated by
680    /// a `Vec` or `String`.
681    /// It's also not safe to build one from a `Vec<u16>` and its length, because
682    /// the allocator cares about the alignment, and these two types have different
683    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
684    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
685    /// these issues, it is often preferable to do casting/transmuting using
686    /// [`NonNull::slice_from_raw_parts`] instead.
687    ///
688    /// The ownership of `ptr` is effectively transferred to the
689    /// `Vec<T>` which may then deallocate, reallocate or change the
690    /// contents of memory pointed to by the pointer at will. Ensure
691    /// that nothing else uses the pointer after calling this
692    /// function.
693    ///
694    /// [`String`]: crate::string::String
695    /// [`alloc::alloc`]: crate::alloc::alloc
696    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// #![feature(box_vec_non_null)]
702    ///
703    /// let v = vec![1, 2, 3];
704    ///
705    /// // Deconstruct the vector into parts.
706    /// let (p, len, cap) = v.into_parts();
707    ///
708    /// unsafe {
709    ///     // Overwrite memory with 4, 5, 6
710    ///     for i in 0..len {
711    ///         p.add(i).write(4 + i);
712    ///     }
713    ///
714    ///     // Put everything back together into a Vec
715    ///     let rebuilt = Vec::from_parts(p, len, cap);
716    ///     assert_eq!(rebuilt, [4, 5, 6]);
717    /// }
718    /// ```
719    ///
720    /// Using memory that was allocated elsewhere:
721    ///
722    /// ```rust
723    /// #![feature(box_vec_non_null)]
724    ///
725    /// use std::alloc::{alloc, Layout};
726    /// use std::ptr::NonNull;
727    ///
728    /// fn main() {
729    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
730    ///
731    ///     let vec = unsafe {
732    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
733    ///             return;
734    ///         };
735    ///
736    ///         mem.write(1_000_000);
737    ///
738    ///         Vec::from_parts(mem, 1, 16)
739    ///     };
740    ///
741    ///     assert_eq!(vec, &[1_000_000]);
742    ///     assert_eq!(vec.capacity(), 16);
743    /// }
744    /// ```
745    #[inline]
746    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
747    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
748        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
749    }
750
751    /// Creates a `Vec<T>` where each element is produced by calling `f` with
752    /// that element's index while walking forward through the `Vec<T>`.
753    ///
754    /// This is essentially the same as writing
755    ///
756    /// ```text
757    /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
758    /// ```
759    /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
760    ///
761    /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
762    ///
763    /// # Example
764    ///
765    /// ```rust
766    /// #![feature(vec_from_fn)]
767    ///
768    /// let vec = Vec::from_fn(5, |i| i);
769    ///
770    /// // indexes are:  0  1  2  3  4
771    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
772    ///
773    /// let vec2 = Vec::from_fn(8, |i| i * 2);
774    ///
775    /// // indexes are:   0  1  2  3  4  5   6   7
776    /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
777    ///
778    /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
779    ///
780    /// // indexes are:       0     1      2     3      4
781    /// assert_eq!(bool_vec, [true, false, true, false, true]);
782    /// ```
783    ///
784    /// The `Vec<T>` is generated in ascending index order, starting from the front
785    /// and going towards the back, so you can use closures with mutable state:
786    /// ```
787    /// #![feature(vec_from_fn)]
788    ///
789    /// let mut state = 1;
790    /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
791    ///
792    /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
793    /// ```
794    #[cfg(not(no_global_oom_handling))]
795    #[inline]
796    #[unstable(feature = "vec_from_fn", reason = "new API", issue = "149698")]
797    pub fn from_fn<F>(length: usize, f: F) -> Self
798    where
799        F: FnMut(usize) -> T,
800    {
801        (0..length).map(f).collect()
802    }
803
804    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
805    ///
806    /// Returns the raw pointer to the underlying data, the length of
807    /// the vector (in elements), and the allocated capacity of the
808    /// data (in elements). These are the same arguments in the same
809    /// order as the arguments to [`from_raw_parts`].
810    ///
811    /// After calling this function, the caller is responsible for the
812    /// memory previously managed by the `Vec`. Most often, one does
813    /// this by converting the raw pointer, length, and capacity back
814    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
815    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
816    /// any method that calls [`dealloc`] with a layout of
817    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
818    /// capacity is zero, nothing needs to be done.
819    ///
820    /// [`from_raw_parts`]: Vec::from_raw_parts
821    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
822    ///
823    /// # Examples
824    ///
825    /// ```
826    /// let v: Vec<i32> = vec![-1, 0, 1];
827    ///
828    /// let (ptr, len, cap) = v.into_raw_parts();
829    ///
830    /// let rebuilt = unsafe {
831    ///     // We can now make changes to the components, such as
832    ///     // transmuting the raw pointer to a compatible type.
833    ///     let ptr = ptr as *mut u32;
834    ///
835    ///     Vec::from_raw_parts(ptr, len, cap)
836    /// };
837    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
838    /// ```
839    #[must_use = "losing the pointer will leak memory"]
840    #[stable(feature = "vec_into_raw_parts", since = "1.93.0")]
841    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
842        let mut me = ManuallyDrop::new(self);
843        (me.as_mut_ptr(), me.len(), me.capacity())
844    }
845
846    #[doc(alias = "into_non_null_parts")]
847    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
848    ///
849    /// Returns the `NonNull` pointer to the underlying data, the length of
850    /// the vector (in elements), and the allocated capacity of the
851    /// data (in elements). These are the same arguments in the same
852    /// order as the arguments to [`from_parts`].
853    ///
854    /// After calling this function, the caller is responsible for the
855    /// memory previously managed by the `Vec`. The only way to do
856    /// this is to convert the `NonNull` pointer, length, and capacity back
857    /// into a `Vec` with the [`from_parts`] function, allowing
858    /// the destructor to perform the cleanup.
859    ///
860    /// [`from_parts`]: Vec::from_parts
861    ///
862    /// # Examples
863    ///
864    /// ```
865    /// #![feature(box_vec_non_null)]
866    ///
867    /// let v: Vec<i32> = vec![-1, 0, 1];
868    ///
869    /// let (ptr, len, cap) = v.into_parts();
870    ///
871    /// let rebuilt = unsafe {
872    ///     // We can now make changes to the components, such as
873    ///     // transmuting the raw pointer to a compatible type.
874    ///     let ptr = ptr.cast::<u32>();
875    ///
876    ///     Vec::from_parts(ptr, len, cap)
877    /// };
878    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
879    /// ```
880    #[must_use = "losing the pointer will leak memory"]
881    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
882    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
883        let (ptr, len, capacity) = self.into_raw_parts();
884        // SAFETY: A `Vec` always has a non-null pointer.
885        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
886    }
887
888    /// Interns the `Vec<T>`, making the underlying memory read-only. This method should be
889    /// called during compile time. (This is a no-op if called during runtime)
890    ///
891    /// This method must be called if the memory used by `Vec` needs to appear in the final
892    /// values of constants.
893    #[unstable(feature = "const_heap", issue = "79597")]
894    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
895    pub const fn const_make_global(mut self) -> &'static [T]
896    where
897        T: Freeze,
898    {
899        unsafe { core::intrinsics::const_make_global(self.as_mut_ptr().cast()) };
900        let me = ManuallyDrop::new(self);
901        unsafe { slice::from_raw_parts(me.as_ptr(), me.len) }
902    }
903}
904
905#[cfg(not(no_global_oom_handling))]
906#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
907#[rustfmt::skip] // FIXME(fee1-dead): temporary measure before rustfmt is bumped
908const impl<T, A: [const] Allocator + [const] Destruct> Vec<T, A> {
909    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
910    /// with the provided allocator.
911    ///
912    /// The vector will be able to hold at least `capacity` elements without
913    /// reallocating. This method is allowed to allocate for more elements than
914    /// `capacity`. If `capacity` is zero, the vector will not allocate.
915    ///
916    /// It is important to note that although the returned vector has the
917    /// minimum *capacity* specified, the vector will have a zero *length*. For
918    /// an explanation of the difference between length and capacity, see
919    /// *[Capacity and reallocation]*.
920    ///
921    /// If it is important to know the exact allocated capacity of a `Vec`,
922    /// always use the [`capacity`] method after construction.
923    ///
924    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
925    /// and the capacity will always be `usize::MAX`.
926    ///
927    /// [Capacity and reallocation]: #capacity-and-reallocation
928    /// [`capacity`]: Vec::capacity
929    ///
930    /// # Panics
931    ///
932    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// #![feature(allocator_api)]
938    ///
939    /// use std::alloc::System;
940    ///
941    /// let mut vec = Vec::with_capacity_in(10, System);
942    ///
943    /// // The vector contains no items, even though it has capacity for more
944    /// assert_eq!(vec.len(), 0);
945    /// assert!(vec.capacity() >= 10);
946    ///
947    /// // These are all done without reallocating...
948    /// for i in 0..10 {
949    ///     vec.push(i);
950    /// }
951    /// assert_eq!(vec.len(), 10);
952    /// assert!(vec.capacity() >= 10);
953    ///
954    /// // ...but this may make the vector reallocate
955    /// vec.push(11);
956    /// assert_eq!(vec.len(), 11);
957    /// assert!(vec.capacity() >= 11);
958    ///
959    /// // A vector of a zero-sized type will always over-allocate, since no
960    /// // allocation is necessary
961    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
962    /// assert_eq!(vec_units.capacity(), usize::MAX);
963    /// ```
964    #[inline]
965    #[unstable(feature = "allocator_api", issue = "32838")]
966    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
967        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
968    }
969
970    /// Appends an element to the back of a collection.
971    ///
972    /// # Panics
973    ///
974    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// let mut vec = vec![1, 2];
980    /// vec.push(3);
981    /// assert_eq!(vec, [1, 2, 3]);
982    /// ```
983    ///
984    /// # Time complexity
985    ///
986    /// Takes amortized *O*(1) time. If the vector's length would exceed its
987    /// capacity after the push, *O*(*capacity*) time is taken to copy the
988    /// vector's elements to a larger allocation. This expensive operation is
989    /// offset by the *capacity* *O*(1) insertions it allows.
990    #[inline]
991    #[stable(feature = "rust1", since = "1.0.0")]
992    #[rustc_confusables("push_back", "put", "append")]
993    pub fn push(&mut self, value: T) {
994        let _ = self.push_mut(value);
995    }
996
997    /// Appends an element to the back of a collection, returning a reference to it.
998    ///
999    /// # Panics
1000    ///
1001    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// #![feature(push_mut)]
1007    ///
1008    ///
1009    /// let mut vec = vec![1, 2];
1010    /// let last = vec.push_mut(3);
1011    /// assert_eq!(*last, 3);
1012    /// assert_eq!(vec, [1, 2, 3]);
1013    ///
1014    /// let last = vec.push_mut(3);
1015    /// *last += 1;
1016    /// assert_eq!(vec, [1, 2, 3, 4]);
1017    /// ```
1018    ///
1019    /// # Time complexity
1020    ///
1021    /// Takes amortized *O*(1) time. If the vector's length would exceed its
1022    /// capacity after the push, *O*(*capacity*) time is taken to copy the
1023    /// vector's elements to a larger allocation. This expensive operation is
1024    /// offset by the *capacity* *O*(1) insertions it allows.
1025    #[inline]
1026    #[unstable(feature = "push_mut", issue = "135974")]
1027    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
1028    pub fn push_mut(&mut self, value: T) -> &mut T {
1029        // Inform codegen that the length does not change across grow_one().
1030        let len = self.len;
1031        // This will panic or abort if we would allocate > isize::MAX bytes
1032        // or if the length increment would overflow for zero-sized types.
1033        if len == self.buf.capacity() {
1034            self.buf.grow_one();
1035        }
1036        unsafe {
1037            let end = self.as_mut_ptr().add(len);
1038            ptr::write(end, value);
1039            self.len = len + 1;
1040            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
1041            &mut *end
1042        }
1043    }
1044}
1045
1046impl<T, A: Allocator> Vec<T, A> {
1047    /// Constructs a new, empty `Vec<T, A>`.
1048    ///
1049    /// The vector will not allocate until elements are pushed onto it.
1050    ///
1051    /// # Examples
1052    ///
1053    /// ```
1054    /// #![feature(allocator_api)]
1055    ///
1056    /// use std::alloc::System;
1057    ///
1058    /// # #[allow(unused_mut)]
1059    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
1060    /// ```
1061    #[inline]
1062    #[unstable(feature = "allocator_api", issue = "32838")]
1063    pub const fn new_in(alloc: A) -> Self {
1064        Vec { buf: RawVec::new_in(alloc), len: 0 }
1065    }
1066
1067    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
1068    /// with the provided allocator.
1069    ///
1070    /// The vector will be able to hold at least `capacity` elements without
1071    /// reallocating. This method is allowed to allocate for more elements than
1072    /// `capacity`. If `capacity` is zero, the vector will not allocate.
1073    ///
1074    /// # Errors
1075    ///
1076    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
1077    /// or if the allocator reports allocation failure.
1078    #[inline]
1079    #[unstable(feature = "allocator_api", issue = "32838")]
1080    // #[unstable(feature = "try_with_capacity", issue = "91913")]
1081    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
1082        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
1083    }
1084
1085    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
1086    /// and an allocator.
1087    ///
1088    /// # Safety
1089    ///
1090    /// This is highly unsafe, due to the number of invariants that aren't
1091    /// checked:
1092    ///
1093    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1094    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1095    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1096    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1097    ///   allocated and deallocated with the same layout.)
1098    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1099    ///   to be the same size as the pointer was allocated with. (Because similar to
1100    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1101    /// * `length` needs to be less than or equal to `capacity`.
1102    /// * The first `length` values must be properly initialized values of type `T`.
1103    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1104    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1105    ///   See the safety documentation of [`pointer::offset`].
1106    ///
1107    /// These requirements are always upheld by any `ptr` that has been allocated
1108    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1109    /// upheld.
1110    ///
1111    /// Violating these may cause problems like corrupting the allocator's
1112    /// internal data structures. For example it is **not** safe
1113    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1114    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1115    /// the allocator cares about the alignment, and these two types have different
1116    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1117    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1118    ///
1119    /// The ownership of `ptr` is effectively transferred to the
1120    /// `Vec<T>` which may then deallocate, reallocate or change the
1121    /// contents of memory pointed to by the pointer at will. Ensure
1122    /// that nothing else uses the pointer after calling this
1123    /// function.
1124    ///
1125    /// [`String`]: crate::string::String
1126    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1127    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1128    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1129    ///
1130    /// # Examples
1131    ///
1132    /// ```
1133    /// #![feature(allocator_api)]
1134    ///
1135    /// use std::alloc::System;
1136    ///
1137    /// use std::ptr;
1138    ///
1139    /// let mut v = Vec::with_capacity_in(3, System);
1140    /// v.push(1);
1141    /// v.push(2);
1142    /// v.push(3);
1143    ///
1144    /// // Deconstruct the vector into parts.
1145    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1146    ///
1147    /// unsafe {
1148    ///     // Overwrite memory with 4, 5, 6
1149    ///     for i in 0..len {
1150    ///         ptr::write(p.add(i), 4 + i);
1151    ///     }
1152    ///
1153    ///     // Put everything back together into a Vec
1154    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1155    ///     assert_eq!(rebuilt, [4, 5, 6]);
1156    /// }
1157    /// ```
1158    ///
1159    /// Using memory that was allocated elsewhere:
1160    ///
1161    /// ```rust
1162    /// #![feature(allocator_api)]
1163    ///
1164    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1165    ///
1166    /// fn main() {
1167    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1168    ///
1169    ///     let vec = unsafe {
1170    ///         let mem = match Global.allocate(layout) {
1171    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1172    ///             Err(AllocError) => return,
1173    ///         };
1174    ///
1175    ///         mem.write(1_000_000);
1176    ///
1177    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1178    ///     };
1179    ///
1180    ///     assert_eq!(vec, &[1_000_000]);
1181    ///     assert_eq!(vec.capacity(), 16);
1182    /// }
1183    /// ```
1184    #[inline]
1185    #[unstable(feature = "allocator_api", issue = "32838")]
1186    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1187        ub_checks::assert_unsafe_precondition!(
1188            check_library_ub,
1189            "Vec::from_raw_parts_in requires that length <= capacity",
1190            (length: usize = length, capacity: usize = capacity) => length <= capacity
1191        );
1192        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1193    }
1194
1195    #[doc(alias = "from_non_null_parts_in")]
1196    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1197    /// and an allocator.
1198    ///
1199    /// # Safety
1200    ///
1201    /// This is highly unsafe, due to the number of invariants that aren't
1202    /// checked:
1203    ///
1204    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1205    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1206    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1207    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1208    ///   allocated and deallocated with the same layout.)
1209    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1210    ///   to be the same size as the pointer was allocated with. (Because similar to
1211    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1212    /// * `length` needs to be less than or equal to `capacity`.
1213    /// * The first `length` values must be properly initialized values of type `T`.
1214    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1215    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1216    ///   See the safety documentation of [`pointer::offset`].
1217    ///
1218    /// These requirements are always upheld by any `ptr` that has been allocated
1219    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1220    /// upheld.
1221    ///
1222    /// Violating these may cause problems like corrupting the allocator's
1223    /// internal data structures. For example it is **not** safe
1224    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1225    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1226    /// the allocator cares about the alignment, and these two types have different
1227    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1228    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1229    ///
1230    /// The ownership of `ptr` is effectively transferred to the
1231    /// `Vec<T>` which may then deallocate, reallocate or change the
1232    /// contents of memory pointed to by the pointer at will. Ensure
1233    /// that nothing else uses the pointer after calling this
1234    /// function.
1235    ///
1236    /// [`String`]: crate::string::String
1237    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1238    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1239    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1240    ///
1241    /// # Examples
1242    ///
1243    /// ```
1244    /// #![feature(allocator_api, box_vec_non_null)]
1245    ///
1246    /// use std::alloc::System;
1247    ///
1248    /// let mut v = Vec::with_capacity_in(3, System);
1249    /// v.push(1);
1250    /// v.push(2);
1251    /// v.push(3);
1252    ///
1253    /// // Deconstruct the vector into parts.
1254    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1255    ///
1256    /// unsafe {
1257    ///     // Overwrite memory with 4, 5, 6
1258    ///     for i in 0..len {
1259    ///         p.add(i).write(4 + i);
1260    ///     }
1261    ///
1262    ///     // Put everything back together into a Vec
1263    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1264    ///     assert_eq!(rebuilt, [4, 5, 6]);
1265    /// }
1266    /// ```
1267    ///
1268    /// Using memory that was allocated elsewhere:
1269    ///
1270    /// ```rust
1271    /// #![feature(allocator_api, box_vec_non_null)]
1272    ///
1273    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1274    ///
1275    /// fn main() {
1276    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1277    ///
1278    ///     let vec = unsafe {
1279    ///         let mem = match Global.allocate(layout) {
1280    ///             Ok(mem) => mem.cast::<u32>(),
1281    ///             Err(AllocError) => return,
1282    ///         };
1283    ///
1284    ///         mem.write(1_000_000);
1285    ///
1286    ///         Vec::from_parts_in(mem, 1, 16, Global)
1287    ///     };
1288    ///
1289    ///     assert_eq!(vec, &[1_000_000]);
1290    ///     assert_eq!(vec.capacity(), 16);
1291    /// }
1292    /// ```
1293    #[inline]
1294    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1295    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1296    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1297        ub_checks::assert_unsafe_precondition!(
1298            check_library_ub,
1299            "Vec::from_parts_in requires that length <= capacity",
1300            (length: usize = length, capacity: usize = capacity) => length <= capacity
1301        );
1302        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1303    }
1304
1305    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1306    ///
1307    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1308    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1309    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1310    ///
1311    /// After calling this function, the caller is responsible for the
1312    /// memory previously managed by the `Vec`. The only way to do
1313    /// this is to convert the raw pointer, length, and capacity back
1314    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1315    /// the destructor to perform the cleanup.
1316    ///
1317    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1318    ///
1319    /// # Examples
1320    ///
1321    /// ```
1322    /// #![feature(allocator_api)]
1323    ///
1324    /// use std::alloc::System;
1325    ///
1326    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1327    /// v.push(-1);
1328    /// v.push(0);
1329    /// v.push(1);
1330    ///
1331    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1332    ///
1333    /// let rebuilt = unsafe {
1334    ///     // We can now make changes to the components, such as
1335    ///     // transmuting the raw pointer to a compatible type.
1336    ///     let ptr = ptr as *mut u32;
1337    ///
1338    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1339    /// };
1340    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1341    /// ```
1342    #[must_use = "losing the pointer will leak memory"]
1343    #[unstable(feature = "allocator_api", issue = "32838")]
1344    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1345        let mut me = ManuallyDrop::new(self);
1346        let len = me.len();
1347        let capacity = me.capacity();
1348        let ptr = me.as_mut_ptr();
1349        let alloc = unsafe { ptr::read(me.allocator()) };
1350        (ptr, len, capacity, alloc)
1351    }
1352
1353    #[doc(alias = "into_non_null_parts_with_alloc")]
1354    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1355    ///
1356    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1357    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1358    /// arguments in the same order as the arguments to [`from_parts_in`].
1359    ///
1360    /// After calling this function, the caller is responsible for the
1361    /// memory previously managed by the `Vec`. The only way to do
1362    /// this is to convert the `NonNull` pointer, length, and capacity back
1363    /// into a `Vec` with the [`from_parts_in`] function, allowing
1364    /// the destructor to perform the cleanup.
1365    ///
1366    /// [`from_parts_in`]: Vec::from_parts_in
1367    ///
1368    /// # Examples
1369    ///
1370    /// ```
1371    /// #![feature(allocator_api, box_vec_non_null)]
1372    ///
1373    /// use std::alloc::System;
1374    ///
1375    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1376    /// v.push(-1);
1377    /// v.push(0);
1378    /// v.push(1);
1379    ///
1380    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1381    ///
1382    /// let rebuilt = unsafe {
1383    ///     // We can now make changes to the components, such as
1384    ///     // transmuting the raw pointer to a compatible type.
1385    ///     let ptr = ptr.cast::<u32>();
1386    ///
1387    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1388    /// };
1389    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1390    /// ```
1391    #[must_use = "losing the pointer will leak memory"]
1392    #[unstable(feature = "allocator_api", issue = "32838")]
1393    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1394    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1395        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1396        // SAFETY: A `Vec` always has a non-null pointer.
1397        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1398    }
1399
1400    /// Returns the total number of elements the vector can hold without
1401    /// reallocating.
1402    ///
1403    /// # Examples
1404    ///
1405    /// ```
1406    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1407    /// vec.push(42);
1408    /// assert!(vec.capacity() >= 10);
1409    /// ```
1410    ///
1411    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1412    ///
1413    /// ```
1414    /// #[derive(Clone)]
1415    /// struct ZeroSized;
1416    ///
1417    /// fn main() {
1418    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1419    ///     let v = vec![ZeroSized; 0];
1420    ///     assert_eq!(v.capacity(), usize::MAX);
1421    /// }
1422    /// ```
1423    #[inline]
1424    #[stable(feature = "rust1", since = "1.0.0")]
1425    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1426    pub const fn capacity(&self) -> usize {
1427        self.buf.capacity()
1428    }
1429
1430    /// Reserves capacity for at least `additional` more elements to be inserted
1431    /// in the given `Vec<T>`. The collection may reserve more space to
1432    /// speculatively avoid frequent reallocations. After calling `reserve`,
1433    /// capacity will be greater than or equal to `self.len() + additional`.
1434    /// Does nothing if capacity is already sufficient.
1435    ///
1436    /// # Panics
1437    ///
1438    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1439    ///
1440    /// # Examples
1441    ///
1442    /// ```
1443    /// let mut vec = vec![1];
1444    /// vec.reserve(10);
1445    /// assert!(vec.capacity() >= 11);
1446    /// ```
1447    #[cfg(not(no_global_oom_handling))]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_diagnostic_item = "vec_reserve"]
1450    pub fn reserve(&mut self, additional: usize) {
1451        self.buf.reserve(self.len, additional);
1452    }
1453
1454    /// Reserves the minimum capacity for at least `additional` more elements to
1455    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1456    /// deliberately over-allocate to speculatively avoid frequent allocations.
1457    /// After calling `reserve_exact`, capacity will be greater than or equal to
1458    /// `self.len() + additional`. Does nothing if the capacity is already
1459    /// sufficient.
1460    ///
1461    /// Note that the allocator may give the collection more space than it
1462    /// requests. Therefore, capacity can not be relied upon to be precisely
1463    /// minimal. Prefer [`reserve`] if future insertions are expected.
1464    ///
1465    /// [`reserve`]: Vec::reserve
1466    ///
1467    /// # Panics
1468    ///
1469    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1470    ///
1471    /// # Examples
1472    ///
1473    /// ```
1474    /// let mut vec = vec![1];
1475    /// vec.reserve_exact(10);
1476    /// assert!(vec.capacity() >= 11);
1477    /// ```
1478    #[cfg(not(no_global_oom_handling))]
1479    #[stable(feature = "rust1", since = "1.0.0")]
1480    pub fn reserve_exact(&mut self, additional: usize) {
1481        self.buf.reserve_exact(self.len, additional);
1482    }
1483
1484    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1485    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1486    /// frequent reallocations. After calling `try_reserve`, capacity will be
1487    /// greater than or equal to `self.len() + additional` if it returns
1488    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1489    /// preserves the contents even if an error occurs.
1490    ///
1491    /// # Errors
1492    ///
1493    /// If the capacity overflows, or the allocator reports a failure, then an error
1494    /// is returned.
1495    ///
1496    /// # Examples
1497    ///
1498    /// ```
1499    /// use std::collections::TryReserveError;
1500    ///
1501    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1502    ///     let mut output = Vec::new();
1503    ///
1504    ///     // Pre-reserve the memory, exiting if we can't
1505    ///     output.try_reserve(data.len())?;
1506    ///
1507    ///     // Now we know this can't OOM in the middle of our complex work
1508    ///     output.extend(data.iter().map(|&val| {
1509    ///         val * 2 + 5 // very complicated
1510    ///     }));
1511    ///
1512    ///     Ok(output)
1513    /// }
1514    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1515    /// ```
1516    #[stable(feature = "try_reserve", since = "1.57.0")]
1517    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1518        self.buf.try_reserve(self.len, additional)
1519    }
1520
1521    /// Tries to reserve the minimum capacity for at least `additional`
1522    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1523    /// this will not deliberately over-allocate to speculatively avoid frequent
1524    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1525    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1526    /// Does nothing if the capacity is already sufficient.
1527    ///
1528    /// Note that the allocator may give the collection more space than it
1529    /// requests. Therefore, capacity can not be relied upon to be precisely
1530    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1531    ///
1532    /// [`try_reserve`]: Vec::try_reserve
1533    ///
1534    /// # Errors
1535    ///
1536    /// If the capacity overflows, or the allocator reports a failure, then an error
1537    /// is returned.
1538    ///
1539    /// # Examples
1540    ///
1541    /// ```
1542    /// use std::collections::TryReserveError;
1543    ///
1544    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1545    ///     let mut output = Vec::new();
1546    ///
1547    ///     // Pre-reserve the memory, exiting if we can't
1548    ///     output.try_reserve_exact(data.len())?;
1549    ///
1550    ///     // Now we know this can't OOM in the middle of our complex work
1551    ///     output.extend(data.iter().map(|&val| {
1552    ///         val * 2 + 5 // very complicated
1553    ///     }));
1554    ///
1555    ///     Ok(output)
1556    /// }
1557    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1558    /// ```
1559    #[stable(feature = "try_reserve", since = "1.57.0")]
1560    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1561        self.buf.try_reserve_exact(self.len, additional)
1562    }
1563
1564    /// Shrinks the capacity of the vector as much as possible.
1565    ///
1566    /// The behavior of this method depends on the allocator, which may either shrink the vector
1567    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1568    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1569    ///
1570    /// [`with_capacity`]: Vec::with_capacity
1571    ///
1572    /// # Examples
1573    ///
1574    /// ```
1575    /// let mut vec = Vec::with_capacity(10);
1576    /// vec.extend([1, 2, 3]);
1577    /// assert!(vec.capacity() >= 10);
1578    /// vec.shrink_to_fit();
1579    /// assert!(vec.capacity() >= 3);
1580    /// ```
1581    #[cfg(not(no_global_oom_handling))]
1582    #[stable(feature = "rust1", since = "1.0.0")]
1583    #[inline]
1584    pub fn shrink_to_fit(&mut self) {
1585        // The capacity is never less than the length, and there's nothing to do when
1586        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1587        // by only calling it with a greater capacity.
1588        if self.capacity() > self.len {
1589            self.buf.shrink_to_fit(self.len);
1590        }
1591    }
1592
1593    /// Shrinks the capacity of the vector with a lower bound.
1594    ///
1595    /// The capacity will remain at least as large as both the length
1596    /// and the supplied value.
1597    ///
1598    /// If the current capacity is less than the lower limit, this is a no-op.
1599    ///
1600    /// # Examples
1601    ///
1602    /// ```
1603    /// let mut vec = Vec::with_capacity(10);
1604    /// vec.extend([1, 2, 3]);
1605    /// assert!(vec.capacity() >= 10);
1606    /// vec.shrink_to(4);
1607    /// assert!(vec.capacity() >= 4);
1608    /// vec.shrink_to(0);
1609    /// assert!(vec.capacity() >= 3);
1610    /// ```
1611    #[cfg(not(no_global_oom_handling))]
1612    #[stable(feature = "shrink_to", since = "1.56.0")]
1613    pub fn shrink_to(&mut self, min_capacity: usize) {
1614        if self.capacity() > min_capacity {
1615            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1616        }
1617    }
1618
1619    /// Converts the vector into [`Box<[T]>`][owned slice].
1620    ///
1621    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1622    ///
1623    /// [owned slice]: Box
1624    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// let v = vec![1, 2, 3];
1630    ///
1631    /// let slice = v.into_boxed_slice();
1632    /// ```
1633    ///
1634    /// Any excess capacity is removed:
1635    ///
1636    /// ```
1637    /// let mut vec = Vec::with_capacity(10);
1638    /// vec.extend([1, 2, 3]);
1639    ///
1640    /// assert!(vec.capacity() >= 10);
1641    /// let slice = vec.into_boxed_slice();
1642    /// assert_eq!(slice.into_vec().capacity(), 3);
1643    /// ```
1644    #[cfg(not(no_global_oom_handling))]
1645    #[stable(feature = "rust1", since = "1.0.0")]
1646    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1647        unsafe {
1648            self.shrink_to_fit();
1649            let me = ManuallyDrop::new(self);
1650            let buf = ptr::read(&me.buf);
1651            let len = me.len();
1652            buf.into_box(len).assume_init()
1653        }
1654    }
1655
1656    /// Shortens the vector, keeping the first `len` elements and dropping
1657    /// the rest.
1658    ///
1659    /// If `len` is greater or equal to the vector's current length, this has
1660    /// no effect.
1661    ///
1662    /// The [`drain`] method can emulate `truncate`, but causes the excess
1663    /// elements to be returned instead of dropped.
1664    ///
1665    /// Note that this method has no effect on the allocated capacity
1666    /// of the vector.
1667    ///
1668    /// # Examples
1669    ///
1670    /// Truncating a five element vector to two elements:
1671    ///
1672    /// ```
1673    /// let mut vec = vec![1, 2, 3, 4, 5];
1674    /// vec.truncate(2);
1675    /// assert_eq!(vec, [1, 2]);
1676    /// ```
1677    ///
1678    /// No truncation occurs when `len` is greater than the vector's current
1679    /// length:
1680    ///
1681    /// ```
1682    /// let mut vec = vec![1, 2, 3];
1683    /// vec.truncate(8);
1684    /// assert_eq!(vec, [1, 2, 3]);
1685    /// ```
1686    ///
1687    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1688    /// method.
1689    ///
1690    /// ```
1691    /// let mut vec = vec![1, 2, 3];
1692    /// vec.truncate(0);
1693    /// assert_eq!(vec, []);
1694    /// ```
1695    ///
1696    /// [`clear`]: Vec::clear
1697    /// [`drain`]: Vec::drain
1698    #[stable(feature = "rust1", since = "1.0.0")]
1699    pub fn truncate(&mut self, len: usize) {
1700        // This is safe because:
1701        //
1702        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1703        //   case avoids creating an invalid slice, and
1704        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1705        //   such that no value will be dropped twice in case `drop_in_place`
1706        //   were to panic once (if it panics twice, the program aborts).
1707        unsafe {
1708            // Note: It's intentional that this is `>` and not `>=`.
1709            //       Changing it to `>=` has negative performance
1710            //       implications in some cases. See #78884 for more.
1711            if len > self.len {
1712                return;
1713            }
1714            let remaining_len = self.len - len;
1715            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1716            self.len = len;
1717            ptr::drop_in_place(s);
1718        }
1719    }
1720
1721    /// Extracts a slice containing the entire vector.
1722    ///
1723    /// Equivalent to `&s[..]`.
1724    ///
1725    /// # Examples
1726    ///
1727    /// ```
1728    /// use std::io::{self, Write};
1729    /// let buffer = vec![1, 2, 3, 5, 8];
1730    /// io::sink().write(buffer.as_slice()).unwrap();
1731    /// ```
1732    #[inline]
1733    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1734    #[rustc_diagnostic_item = "vec_as_slice"]
1735    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1736    pub const fn as_slice(&self) -> &[T] {
1737        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1738        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1739        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1740        // "wrap" through overflowing memory addresses.
1741        //
1742        // * Vec API guarantees that self.buf:
1743        //      * contains only properly-initialized items within 0..len
1744        //      * is aligned, contiguous, and valid for `len` reads
1745        //      * obeys size and address-wrapping constraints
1746        //
1747        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1748        //   check ensures that it is not possible to mutably alias `self.buf` within the
1749        //   returned lifetime.
1750        unsafe {
1751            // normally this would use `slice::from_raw_parts`, but it's
1752            // instantiated often enough that avoiding the UB check is worth it
1753            &*core::intrinsics::aggregate_raw_ptr::<*const [T], _, _>(self.as_ptr(), self.len)
1754        }
1755    }
1756
1757    /// Extracts a mutable slice of the entire vector.
1758    ///
1759    /// Equivalent to `&mut s[..]`.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// use std::io::{self, Read};
1765    /// let mut buffer = vec![0; 3];
1766    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1767    /// ```
1768    #[inline]
1769    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1770    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1771    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1772    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1773        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1774        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1775        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1776        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1777        //
1778        // * Vec API guarantees that self.buf:
1779        //      * contains only properly-initialized items within 0..len
1780        //      * is aligned, contiguous, and valid for `len` reads
1781        //      * obeys size and address-wrapping constraints
1782        //
1783        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1784        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1785        //   within the returned lifetime.
1786        unsafe {
1787            // normally this would use `slice::from_raw_parts_mut`, but it's
1788            // instantiated often enough that avoiding the UB check is worth it
1789            &mut *core::intrinsics::aggregate_raw_ptr::<*mut [T], _, _>(self.as_mut_ptr(), self.len)
1790        }
1791    }
1792
1793    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1794    /// valid for zero sized reads if the vector didn't allocate.
1795    ///
1796    /// The caller must ensure that the vector outlives the pointer this
1797    /// function returns, or else it will end up dangling.
1798    /// Modifying the vector may cause its buffer to be reallocated,
1799    /// which would also make any pointers to it invalid.
1800    ///
1801    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1802    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1803    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1804    ///
1805    /// This method guarantees that for the purpose of the aliasing model, this method
1806    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1807    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1808    /// and [`as_non_null`].
1809    /// Note that calling other methods that materialize mutable references to the slice,
1810    /// or mutable references to specific elements you are planning on accessing through this pointer,
1811    /// as well as writing to those elements, may still invalidate this pointer.
1812    /// See the second example below for how this guarantee can be used.
1813    ///
1814    ///
1815    /// # Examples
1816    ///
1817    /// ```
1818    /// let x = vec![1, 2, 4];
1819    /// let x_ptr = x.as_ptr();
1820    ///
1821    /// unsafe {
1822    ///     for i in 0..x.len() {
1823    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1824    ///     }
1825    /// }
1826    /// ```
1827    ///
1828    /// Due to the aliasing guarantee, the following code is legal:
1829    ///
1830    /// ```rust
1831    /// unsafe {
1832    ///     let mut v = vec![0, 1, 2];
1833    ///     let ptr1 = v.as_ptr();
1834    ///     let _ = ptr1.read();
1835    ///     let ptr2 = v.as_mut_ptr().offset(2);
1836    ///     ptr2.write(2);
1837    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1838    ///     // because it mutated a different element:
1839    ///     let _ = ptr1.read();
1840    /// }
1841    /// ```
1842    ///
1843    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1844    /// [`as_ptr`]: Vec::as_ptr
1845    /// [`as_non_null`]: Vec::as_non_null
1846    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1847    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1848    #[rustc_never_returns_null_ptr]
1849    #[rustc_as_ptr]
1850    #[inline]
1851    pub const fn as_ptr(&self) -> *const T {
1852        // We shadow the slice method of the same name to avoid going through
1853        // `deref`, which creates an intermediate reference.
1854        self.buf.ptr()
1855    }
1856
1857    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1858    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1859    ///
1860    /// The caller must ensure that the vector outlives the pointer this
1861    /// function returns, or else it will end up dangling.
1862    /// Modifying the vector may cause its buffer to be reallocated,
1863    /// which would also make any pointers to it invalid.
1864    ///
1865    /// This method guarantees that for the purpose of the aliasing model, this method
1866    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1867    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1868    /// and [`as_non_null`].
1869    /// Note that calling other methods that materialize references to the slice,
1870    /// or references to specific elements you are planning on accessing through this pointer,
1871    /// may still invalidate this pointer.
1872    /// See the second example below for how this guarantee can be used.
1873    ///
1874    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1875    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1876    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1877    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1878    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// // Allocate vector big enough for 4 elements.
1884    /// let size = 4;
1885    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1886    /// let x_ptr = x.as_mut_ptr();
1887    ///
1888    /// // Initialize elements via raw pointer writes, then set length.
1889    /// unsafe {
1890    ///     for i in 0..size {
1891    ///         *x_ptr.add(i) = i as i32;
1892    ///     }
1893    ///     x.set_len(size);
1894    /// }
1895    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1896    /// ```
1897    ///
1898    /// Due to the aliasing guarantee, the following code is legal:
1899    ///
1900    /// ```rust
1901    /// unsafe {
1902    ///     let mut v = vec![0];
1903    ///     let ptr1 = v.as_mut_ptr();
1904    ///     ptr1.write(1);
1905    ///     let ptr2 = v.as_mut_ptr();
1906    ///     ptr2.write(2);
1907    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1908    ///     ptr1.write(3);
1909    /// }
1910    /// ```
1911    ///
1912    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1913    ///
1914    /// ```
1915    /// use std::mem::{ManuallyDrop, MaybeUninit};
1916    ///
1917    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1918    /// let ptr = v.as_mut_ptr();
1919    /// let capacity = v.capacity();
1920    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1921    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1922    /// drop(unsafe { Box::from_raw(slice_ptr) });
1923    /// ```
1924    ///
1925    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1926    /// [`as_ptr`]: Vec::as_ptr
1927    /// [`as_non_null`]: Vec::as_non_null
1928    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1929    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1930    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1931    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1932    #[rustc_never_returns_null_ptr]
1933    #[rustc_as_ptr]
1934    #[inline]
1935    pub const fn as_mut_ptr(&mut self) -> *mut T {
1936        // We shadow the slice method of the same name to avoid going through
1937        // `deref_mut`, which creates an intermediate reference.
1938        self.buf.ptr()
1939    }
1940
1941    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1942    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1943    ///
1944    /// The caller must ensure that the vector outlives the pointer this
1945    /// function returns, or else it will end up dangling.
1946    /// Modifying the vector may cause its buffer to be reallocated,
1947    /// which would also make any pointers to it invalid.
1948    ///
1949    /// This method guarantees that for the purpose of the aliasing model, this method
1950    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1951    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1952    /// and [`as_non_null`].
1953    /// Note that calling other methods that materialize references to the slice,
1954    /// or references to specific elements you are planning on accessing through this pointer,
1955    /// may still invalidate this pointer.
1956    /// See the second example below for how this guarantee can be used.
1957    ///
1958    /// # Examples
1959    ///
1960    /// ```
1961    /// #![feature(box_vec_non_null)]
1962    ///
1963    /// // Allocate vector big enough for 4 elements.
1964    /// let size = 4;
1965    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1966    /// let x_ptr = x.as_non_null();
1967    ///
1968    /// // Initialize elements via raw pointer writes, then set length.
1969    /// unsafe {
1970    ///     for i in 0..size {
1971    ///         x_ptr.add(i).write(i as i32);
1972    ///     }
1973    ///     x.set_len(size);
1974    /// }
1975    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1976    /// ```
1977    ///
1978    /// Due to the aliasing guarantee, the following code is legal:
1979    ///
1980    /// ```rust
1981    /// #![feature(box_vec_non_null)]
1982    ///
1983    /// unsafe {
1984    ///     let mut v = vec![0];
1985    ///     let ptr1 = v.as_non_null();
1986    ///     ptr1.write(1);
1987    ///     let ptr2 = v.as_non_null();
1988    ///     ptr2.write(2);
1989    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1990    ///     ptr1.write(3);
1991    /// }
1992    /// ```
1993    ///
1994    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1995    /// [`as_ptr`]: Vec::as_ptr
1996    /// [`as_non_null`]: Vec::as_non_null
1997    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1998    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1999    #[inline]
2000    pub const fn as_non_null(&mut self) -> NonNull<T> {
2001        self.buf.non_null()
2002    }
2003
2004    /// Returns a reference to the underlying allocator.
2005    #[unstable(feature = "allocator_api", issue = "32838")]
2006    #[inline]
2007    pub fn allocator(&self) -> &A {
2008        self.buf.allocator()
2009    }
2010
2011    /// Forces the length of the vector to `new_len`.
2012    ///
2013    /// This is a low-level operation that maintains none of the normal
2014    /// invariants of the type. Normally changing the length of a vector
2015    /// is done using one of the safe operations instead, such as
2016    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
2017    ///
2018    /// [`truncate`]: Vec::truncate
2019    /// [`resize`]: Vec::resize
2020    /// [`extend`]: Extend::extend
2021    /// [`clear`]: Vec::clear
2022    ///
2023    /// # Safety
2024    ///
2025    /// - `new_len` must be less than or equal to [`capacity()`].
2026    /// - The elements at `old_len..new_len` must be initialized.
2027    ///
2028    /// [`capacity()`]: Vec::capacity
2029    ///
2030    /// # Examples
2031    ///
2032    /// See [`spare_capacity_mut()`] for an example with safe
2033    /// initialization of capacity elements and use of this method.
2034    ///
2035    /// `set_len()` can be useful for situations in which the vector
2036    /// is serving as a buffer for other code, particularly over FFI:
2037    ///
2038    /// ```no_run
2039    /// # #![allow(dead_code)]
2040    /// # // This is just a minimal skeleton for the doc example;
2041    /// # // don't use this as a starting point for a real library.
2042    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
2043    /// # const Z_OK: i32 = 0;
2044    /// # unsafe extern "C" {
2045    /// #     fn deflateGetDictionary(
2046    /// #         strm: *mut std::ffi::c_void,
2047    /// #         dictionary: *mut u8,
2048    /// #         dictLength: *mut usize,
2049    /// #     ) -> i32;
2050    /// # }
2051    /// # impl StreamWrapper {
2052    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
2053    ///     // Per the FFI method's docs, "32768 bytes is always enough".
2054    ///     let mut dict = Vec::with_capacity(32_768);
2055    ///     let mut dict_length = 0;
2056    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
2057    ///     // 1. `dict_length` elements were initialized.
2058    ///     // 2. `dict_length` <= the capacity (32_768)
2059    ///     // which makes `set_len` safe to call.
2060    ///     unsafe {
2061    ///         // Make the FFI call...
2062    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
2063    ///         if r == Z_OK {
2064    ///             // ...and update the length to what was initialized.
2065    ///             dict.set_len(dict_length);
2066    ///             Some(dict)
2067    ///         } else {
2068    ///             None
2069    ///         }
2070    ///     }
2071    /// }
2072    /// # }
2073    /// ```
2074    ///
2075    /// While the following example is sound, there is a memory leak since
2076    /// the inner vectors were not freed prior to the `set_len` call:
2077    ///
2078    /// ```
2079    /// let mut vec = vec![vec![1, 0, 0],
2080    ///                    vec![0, 1, 0],
2081    ///                    vec![0, 0, 1]];
2082    /// // SAFETY:
2083    /// // 1. `old_len..0` is empty so no elements need to be initialized.
2084    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
2085    /// unsafe {
2086    ///     vec.set_len(0);
2087    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
2088    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2089    /// #   vec.set_len(3);
2090    /// }
2091    /// ```
2092    ///
2093    /// Normally, here, one would use [`clear`] instead to correctly drop
2094    /// the contents and thus not leak memory.
2095    ///
2096    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
2097    #[inline]
2098    #[stable(feature = "rust1", since = "1.0.0")]
2099    pub unsafe fn set_len(&mut self, new_len: usize) {
2100        ub_checks::assert_unsafe_precondition!(
2101            check_library_ub,
2102            "Vec::set_len requires that new_len <= capacity()",
2103            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
2104        );
2105
2106        self.len = new_len;
2107    }
2108
2109    /// Removes an element from the vector and returns it.
2110    ///
2111    /// The removed element is replaced by the last element of the vector.
2112    ///
2113    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2114    /// If you need to preserve the element order, use [`remove`] instead.
2115    ///
2116    /// [`remove`]: Vec::remove
2117    ///
2118    /// # Panics
2119    ///
2120    /// Panics if `index` is out of bounds.
2121    ///
2122    /// # Examples
2123    ///
2124    /// ```
2125    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2126    ///
2127    /// assert_eq!(v.swap_remove(1), "bar");
2128    /// assert_eq!(v, ["foo", "qux", "baz"]);
2129    ///
2130    /// assert_eq!(v.swap_remove(0), "foo");
2131    /// assert_eq!(v, ["baz", "qux"]);
2132    /// ```
2133    #[inline]
2134    #[stable(feature = "rust1", since = "1.0.0")]
2135    pub fn swap_remove(&mut self, index: usize) -> T {
2136        #[cold]
2137        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2138        #[optimize(size)]
2139        fn assert_failed(index: usize, len: usize) -> ! {
2140            panic!("swap_remove index (is {index}) should be < len (is {len})");
2141        }
2142
2143        let len = self.len();
2144        if index >= len {
2145            assert_failed(index, len);
2146        }
2147        unsafe {
2148            // We replace self[index] with the last element. Note that if the
2149            // bounds check above succeeds there must be a last element (which
2150            // can be self[index] itself).
2151            let value = ptr::read(self.as_ptr().add(index));
2152            let base_ptr = self.as_mut_ptr();
2153            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2154            self.set_len(len - 1);
2155            value
2156        }
2157    }
2158
2159    /// Inserts an element at position `index` within the vector, shifting all
2160    /// elements after it to the right.
2161    ///
2162    /// # Panics
2163    ///
2164    /// Panics if `index > len`.
2165    ///
2166    /// # Examples
2167    ///
2168    /// ```
2169    /// let mut vec = vec!['a', 'b', 'c'];
2170    /// vec.insert(1, 'd');
2171    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2172    /// vec.insert(4, 'e');
2173    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2174    /// ```
2175    ///
2176    /// # Time complexity
2177    ///
2178    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2179    /// shifted to the right. In the worst case, all elements are shifted when
2180    /// the insertion index is 0.
2181    #[cfg(not(no_global_oom_handling))]
2182    #[stable(feature = "rust1", since = "1.0.0")]
2183    #[track_caller]
2184    pub fn insert(&mut self, index: usize, element: T) {
2185        let _ = self.insert_mut(index, element);
2186    }
2187
2188    /// Inserts an element at position `index` within the vector, shifting all
2189    /// elements after it to the right, and returning a reference to the new
2190    /// element.
2191    ///
2192    /// # Panics
2193    ///
2194    /// Panics if `index > len`.
2195    ///
2196    /// # Examples
2197    ///
2198    /// ```
2199    /// #![feature(push_mut)]
2200    /// let mut vec = vec![1, 3, 5, 9];
2201    /// let x = vec.insert_mut(3, 6);
2202    /// *x += 1;
2203    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2204    /// ```
2205    ///
2206    /// # Time complexity
2207    ///
2208    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2209    /// shifted to the right. In the worst case, all elements are shifted when
2210    /// the insertion index is 0.
2211    #[cfg(not(no_global_oom_handling))]
2212    #[inline]
2213    #[unstable(feature = "push_mut", issue = "135974")]
2214    #[track_caller]
2215    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2216    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2217        #[cold]
2218        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2219        #[track_caller]
2220        #[optimize(size)]
2221        fn assert_failed(index: usize, len: usize) -> ! {
2222            panic!("insertion index (is {index}) should be <= len (is {len})");
2223        }
2224
2225        let len = self.len();
2226        if index > len {
2227            assert_failed(index, len);
2228        }
2229
2230        // space for the new element
2231        if len == self.buf.capacity() {
2232            self.buf.grow_one();
2233        }
2234
2235        unsafe {
2236            // infallible
2237            // The spot to put the new value
2238            let p = self.as_mut_ptr().add(index);
2239            {
2240                if index < len {
2241                    // Shift everything over to make space. (Duplicating the
2242                    // `index`th element into two consecutive places.)
2243                    ptr::copy(p, p.add(1), len - index);
2244                }
2245                // Write it in, overwriting the first copy of the `index`th
2246                // element.
2247                ptr::write(p, element);
2248            }
2249            self.set_len(len + 1);
2250            &mut *p
2251        }
2252    }
2253
2254    /// Removes and returns the element at position `index` within the vector,
2255    /// shifting all elements after it to the left.
2256    ///
2257    /// Note: Because this shifts over the remaining elements, it has a
2258    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2259    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2260    /// elements from the beginning of the `Vec`, consider using
2261    /// [`VecDeque::pop_front`] instead.
2262    ///
2263    /// [`swap_remove`]: Vec::swap_remove
2264    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2265    ///
2266    /// # Panics
2267    ///
2268    /// Panics if `index` is out of bounds.
2269    ///
2270    /// # Examples
2271    ///
2272    /// ```
2273    /// let mut v = vec!['a', 'b', 'c'];
2274    /// assert_eq!(v.remove(1), 'b');
2275    /// assert_eq!(v, ['a', 'c']);
2276    /// ```
2277    #[stable(feature = "rust1", since = "1.0.0")]
2278    #[track_caller]
2279    #[rustc_confusables("delete", "take")]
2280    pub fn remove(&mut self, index: usize) -> T {
2281        #[cold]
2282        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2283        #[track_caller]
2284        #[optimize(size)]
2285        fn assert_failed(index: usize, len: usize) -> ! {
2286            panic!("removal index (is {index}) should be < len (is {len})");
2287        }
2288
2289        match self.try_remove(index) {
2290            Some(elem) => elem,
2291            None => assert_failed(index, self.len()),
2292        }
2293    }
2294
2295    /// Remove and return the element at position `index` within the vector,
2296    /// shifting all elements after it to the left, or [`None`] if it does not
2297    /// exist.
2298    ///
2299    /// Note: Because this shifts over the remaining elements, it has a
2300    /// worst-case performance of *O*(*n*). If you'd like to remove
2301    /// elements from the beginning of the `Vec`, consider using
2302    /// [`VecDeque::pop_front`] instead.
2303    ///
2304    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2305    ///
2306    /// # Examples
2307    ///
2308    /// ```
2309    /// #![feature(vec_try_remove)]
2310    /// let mut v = vec![1, 2, 3];
2311    /// assert_eq!(v.try_remove(0), Some(1));
2312    /// assert_eq!(v.try_remove(2), None);
2313    /// ```
2314    #[unstable(feature = "vec_try_remove", issue = "146954")]
2315    #[rustc_confusables("delete", "take", "remove")]
2316    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2317        let len = self.len();
2318        if index >= len {
2319            return None;
2320        }
2321        unsafe {
2322            // infallible
2323            let ret;
2324            {
2325                // the place we are taking from.
2326                let ptr = self.as_mut_ptr().add(index);
2327                // copy it out, unsafely having a copy of the value on
2328                // the stack and in the vector at the same time.
2329                ret = ptr::read(ptr);
2330
2331                // Shift everything down to fill in that spot.
2332                ptr::copy(ptr.add(1), ptr, len - index - 1);
2333            }
2334            self.set_len(len - 1);
2335            Some(ret)
2336        }
2337    }
2338
2339    /// Retains only the elements specified by the predicate.
2340    ///
2341    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2342    /// This method operates in place, visiting each element exactly once in the
2343    /// original order, and preserves the order of the retained elements.
2344    ///
2345    /// # Examples
2346    ///
2347    /// ```
2348    /// let mut vec = vec![1, 2, 3, 4];
2349    /// vec.retain(|&x| x % 2 == 0);
2350    /// assert_eq!(vec, [2, 4]);
2351    /// ```
2352    ///
2353    /// Because the elements are visited exactly once in the original order,
2354    /// external state may be used to decide which elements to keep.
2355    ///
2356    /// ```
2357    /// let mut vec = vec![1, 2, 3, 4, 5];
2358    /// let keep = [false, true, true, false, true];
2359    /// let mut iter = keep.iter();
2360    /// vec.retain(|_| *iter.next().unwrap());
2361    /// assert_eq!(vec, [2, 3, 5]);
2362    /// ```
2363    #[stable(feature = "rust1", since = "1.0.0")]
2364    pub fn retain<F>(&mut self, mut f: F)
2365    where
2366        F: FnMut(&T) -> bool,
2367    {
2368        self.retain_mut(|elem| f(elem));
2369    }
2370
2371    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2372    ///
2373    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2374    /// This method operates in place, visiting each element exactly once in the
2375    /// original order, and preserves the order of the retained elements.
2376    ///
2377    /// # Examples
2378    ///
2379    /// ```
2380    /// let mut vec = vec![1, 2, 3, 4];
2381    /// vec.retain_mut(|x| if *x <= 3 {
2382    ///     *x += 1;
2383    ///     true
2384    /// } else {
2385    ///     false
2386    /// });
2387    /// assert_eq!(vec, [2, 3, 4]);
2388    /// ```
2389    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2390    pub fn retain_mut<F>(&mut self, mut f: F)
2391    where
2392        F: FnMut(&mut T) -> bool,
2393    {
2394        let original_len = self.len();
2395
2396        if original_len == 0 {
2397            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2398            return;
2399        }
2400
2401        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2402        //      |            ^- write                ^- read             |
2403        //      |<-              original_len                          ->|
2404        // Kept: Elements which predicate returns true on.
2405        // Hole: Moved or dropped element slot.
2406        // Unchecked: Unchecked valid elements.
2407        //
2408        // This drop guard will be invoked when predicate or `drop` of element panicked.
2409        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2410        // In cases when predicate and `drop` never panick, it will be optimized out.
2411        struct PanicGuard<'a, T, A: Allocator> {
2412            v: &'a mut Vec<T, A>,
2413            read: usize,
2414            write: usize,
2415            original_len: usize,
2416        }
2417
2418        impl<T, A: Allocator> Drop for PanicGuard<'_, T, A> {
2419            #[cold]
2420            fn drop(&mut self) {
2421                let remaining = self.original_len - self.read;
2422                // SAFETY: Trailing unchecked items must be valid since we never touch them.
2423                unsafe {
2424                    ptr::copy(
2425                        self.v.as_ptr().add(self.read),
2426                        self.v.as_mut_ptr().add(self.write),
2427                        remaining,
2428                    );
2429                }
2430                // SAFETY: After filling holes, all items are in contiguous memory.
2431                unsafe {
2432                    self.v.set_len(self.write + remaining);
2433                }
2434            }
2435        }
2436
2437        let mut read = 0;
2438        loop {
2439            // SAFETY: read < original_len
2440            let cur = unsafe { self.get_unchecked_mut(read) };
2441            if hint::unlikely(!f(cur)) {
2442                break;
2443            }
2444            read += 1;
2445            if read == original_len {
2446                // All elements are kept, return early.
2447                return;
2448            }
2449        }
2450
2451        // Critical section starts here and at least one element is going to be removed.
2452        // Advance `g.read` early to avoid double drop if `drop_in_place` panicked.
2453        let mut g = PanicGuard { v: self, read: read + 1, write: read, original_len };
2454        // SAFETY: previous `read` is always less than original_len.
2455        unsafe { ptr::drop_in_place(&mut *g.v.as_mut_ptr().add(read)) };
2456
2457        while g.read < g.original_len {
2458            // SAFETY: `read` is always less than original_len.
2459            let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.read) };
2460            if !f(cur) {
2461                // Advance `read` early to avoid double drop if `drop_in_place` panicked.
2462                g.read += 1;
2463                // SAFETY: We never touch this element again after dropped.
2464                unsafe { ptr::drop_in_place(cur) };
2465            } else {
2466                // SAFETY: `read` > `write`, so the slots don't overlap.
2467                // We use copy for move, and never touch the source element again.
2468                unsafe {
2469                    let hole = g.v.as_mut_ptr().add(g.write);
2470                    ptr::copy_nonoverlapping(cur, hole, 1);
2471                }
2472                g.write += 1;
2473                g.read += 1;
2474            }
2475        }
2476
2477        // We are leaving the critical section and no panic happened,
2478        // Commit the length change and forget the guard.
2479        // SAFETY: `write` is always less than or equal to original_len.
2480        unsafe { g.v.set_len(g.write) };
2481        mem::forget(g);
2482    }
2483
2484    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2485    /// key.
2486    ///
2487    /// If the vector is sorted, this removes all duplicates.
2488    ///
2489    /// # Examples
2490    ///
2491    /// ```
2492    /// let mut vec = vec![10, 20, 21, 30, 20];
2493    ///
2494    /// vec.dedup_by_key(|i| *i / 10);
2495    ///
2496    /// assert_eq!(vec, [10, 20, 30, 20]);
2497    /// ```
2498    #[stable(feature = "dedup_by", since = "1.16.0")]
2499    #[inline]
2500    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2501    where
2502        F: FnMut(&mut T) -> K,
2503        K: PartialEq,
2504    {
2505        self.dedup_by(|a, b| key(a) == key(b))
2506    }
2507
2508    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2509    /// relation.
2510    ///
2511    /// The `same_bucket` function is passed references to two elements from the vector and
2512    /// must determine if the elements compare equal. The elements are passed in opposite order
2513    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2514    ///
2515    /// If the vector is sorted, this removes all duplicates.
2516    ///
2517    /// # Examples
2518    ///
2519    /// ```
2520    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2521    ///
2522    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2523    ///
2524    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2525    /// ```
2526    #[stable(feature = "dedup_by", since = "1.16.0")]
2527    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2528    where
2529        F: FnMut(&mut T, &mut T) -> bool,
2530    {
2531        let len = self.len();
2532        if len <= 1 {
2533            return;
2534        }
2535
2536        // Check if we ever want to remove anything.
2537        // This allows to use copy_non_overlapping in next cycle.
2538        // And avoids any memory writes if we don't need to remove anything.
2539        let mut first_duplicate_idx: usize = 1;
2540        let start = self.as_mut_ptr();
2541        while first_duplicate_idx != len {
2542            let found_duplicate = unsafe {
2543                // SAFETY: first_duplicate always in range [1..len)
2544                // Note that we start iteration from 1 so we never overflow.
2545                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2546                let current = start.add(first_duplicate_idx);
2547                // We explicitly say in docs that references are reversed.
2548                same_bucket(&mut *current, &mut *prev)
2549            };
2550            if found_duplicate {
2551                break;
2552            }
2553            first_duplicate_idx += 1;
2554        }
2555        // Don't need to remove anything.
2556        // We cannot get bigger than len.
2557        if first_duplicate_idx == len {
2558            return;
2559        }
2560
2561        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2562        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2563            /* Offset of the element we want to check if it is duplicate */
2564            read: usize,
2565
2566            /* Offset of the place where we want to place the non-duplicate
2567             * when we find it. */
2568            write: usize,
2569
2570            /* The Vec that would need correction if `same_bucket` panicked */
2571            vec: &'a mut Vec<T, A>,
2572        }
2573
2574        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2575            fn drop(&mut self) {
2576                /* This code gets executed when `same_bucket` panics */
2577
2578                /* SAFETY: invariant guarantees that `read - write`
2579                 * and `len - read` never overflow and that the copy is always
2580                 * in-bounds. */
2581                unsafe {
2582                    let ptr = self.vec.as_mut_ptr();
2583                    let len = self.vec.len();
2584
2585                    /* How many items were left when `same_bucket` panicked.
2586                     * Basically vec[read..].len() */
2587                    let items_left = len.wrapping_sub(self.read);
2588
2589                    /* Pointer to first item in vec[write..write+items_left] slice */
2590                    let dropped_ptr = ptr.add(self.write);
2591                    /* Pointer to first item in vec[read..] slice */
2592                    let valid_ptr = ptr.add(self.read);
2593
2594                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2595                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2596                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2597
2598                    /* How many items have been already dropped
2599                     * Basically vec[read..write].len() */
2600                    let dropped = self.read.wrapping_sub(self.write);
2601
2602                    self.vec.set_len(len - dropped);
2603                }
2604            }
2605        }
2606
2607        /* Drop items while going through Vec, it should be more efficient than
2608         * doing slice partition_dedup + truncate */
2609
2610        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2611        let mut gap =
2612            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2613        unsafe {
2614            // SAFETY: we checked that first_duplicate_idx in bounds before.
2615            // If drop panics, `gap` would remove this item without drop.
2616            ptr::drop_in_place(start.add(first_duplicate_idx));
2617        }
2618
2619        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2620         * are always in-bounds and read_ptr never aliases prev_ptr */
2621        unsafe {
2622            while gap.read < len {
2623                let read_ptr = start.add(gap.read);
2624                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2625
2626                // We explicitly say in docs that references are reversed.
2627                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2628                if found_duplicate {
2629                    // Increase `gap.read` now since the drop may panic.
2630                    gap.read += 1;
2631                    /* We have found duplicate, drop it in-place */
2632                    ptr::drop_in_place(read_ptr);
2633                } else {
2634                    let write_ptr = start.add(gap.write);
2635
2636                    /* read_ptr cannot be equal to write_ptr because at this point
2637                     * we guaranteed to skip at least one element (before loop starts).
2638                     */
2639                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2640
2641                    /* We have filled that place, so go further */
2642                    gap.write += 1;
2643                    gap.read += 1;
2644                }
2645            }
2646
2647            /* Technically we could let `gap` clean up with its Drop, but
2648             * when `same_bucket` is guaranteed to not panic, this bloats a little
2649             * the codegen, so we just do it manually */
2650            gap.vec.set_len(gap.write);
2651            mem::forget(gap);
2652        }
2653    }
2654
2655    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2656    /// otherwise an error is returned with the element.
2657    ///
2658    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2659    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2660    ///
2661    /// [`push`]: Vec::push
2662    /// [`reserve`]: Vec::reserve
2663    /// [`try_reserve`]: Vec::try_reserve
2664    ///
2665    /// # Examples
2666    ///
2667    /// A manual, panic-free alternative to [`FromIterator`]:
2668    ///
2669    /// ```
2670    /// #![feature(vec_push_within_capacity)]
2671    ///
2672    /// use std::collections::TryReserveError;
2673    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2674    ///     let mut vec = Vec::new();
2675    ///     for value in iter {
2676    ///         if let Err(value) = vec.push_within_capacity(value) {
2677    ///             vec.try_reserve(1)?;
2678    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2679    ///             let _ = vec.push_within_capacity(value);
2680    ///         }
2681    ///     }
2682    ///     Ok(vec)
2683    /// }
2684    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2685    /// ```
2686    ///
2687    /// # Time complexity
2688    ///
2689    /// Takes *O*(1) time.
2690    #[inline]
2691    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2692    // #[unstable(feature = "push_mut", issue = "135974")]
2693    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2694        if self.len == self.buf.capacity() {
2695            return Err(value);
2696        }
2697
2698        unsafe {
2699            let end = self.as_mut_ptr().add(self.len);
2700            ptr::write(end, value);
2701            self.len += 1;
2702
2703            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2704            Ok(&mut *end)
2705        }
2706    }
2707
2708    /// Removes the last element from a vector and returns it, or [`None`] if it
2709    /// is empty.
2710    ///
2711    /// If you'd like to pop the first element, consider using
2712    /// [`VecDeque::pop_front`] instead.
2713    ///
2714    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2715    ///
2716    /// # Examples
2717    ///
2718    /// ```
2719    /// let mut vec = vec![1, 2, 3];
2720    /// assert_eq!(vec.pop(), Some(3));
2721    /// assert_eq!(vec, [1, 2]);
2722    /// ```
2723    ///
2724    /// # Time complexity
2725    ///
2726    /// Takes *O*(1) time.
2727    #[inline]
2728    #[stable(feature = "rust1", since = "1.0.0")]
2729    #[rustc_diagnostic_item = "vec_pop"]
2730    pub fn pop(&mut self) -> Option<T> {
2731        if self.len == 0 {
2732            None
2733        } else {
2734            unsafe {
2735                self.len -= 1;
2736                core::hint::assert_unchecked(self.len < self.capacity());
2737                Some(ptr::read(self.as_ptr().add(self.len())))
2738            }
2739        }
2740    }
2741
2742    /// Removes and returns the last element from a vector if the predicate
2743    /// returns `true`, or [`None`] if the predicate returns false or the vector
2744    /// is empty (the predicate will not be called in that case).
2745    ///
2746    /// # Examples
2747    ///
2748    /// ```
2749    /// let mut vec = vec![1, 2, 3, 4];
2750    /// let pred = |x: &mut i32| *x % 2 == 0;
2751    ///
2752    /// assert_eq!(vec.pop_if(pred), Some(4));
2753    /// assert_eq!(vec, [1, 2, 3]);
2754    /// assert_eq!(vec.pop_if(pred), None);
2755    /// ```
2756    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2757    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2758        let last = self.last_mut()?;
2759        if predicate(last) { self.pop() } else { None }
2760    }
2761
2762    /// Returns a mutable reference to the last item in the vector, or
2763    /// `None` if it is empty.
2764    ///
2765    /// # Examples
2766    ///
2767    /// Basic usage:
2768    ///
2769    /// ```
2770    /// #![feature(vec_peek_mut)]
2771    /// let mut vec = Vec::new();
2772    /// assert!(vec.peek_mut().is_none());
2773    ///
2774    /// vec.push(1);
2775    /// vec.push(5);
2776    /// vec.push(2);
2777    /// assert_eq!(vec.last(), Some(&2));
2778    /// if let Some(mut val) = vec.peek_mut() {
2779    ///     *val = 0;
2780    /// }
2781    /// assert_eq!(vec.last(), Some(&0));
2782    /// ```
2783    #[inline]
2784    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2785    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2786        PeekMut::new(self)
2787    }
2788
2789    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2790    ///
2791    /// # Panics
2792    ///
2793    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2794    ///
2795    /// # Examples
2796    ///
2797    /// ```
2798    /// let mut vec = vec![1, 2, 3];
2799    /// let mut vec2 = vec![4, 5, 6];
2800    /// vec.append(&mut vec2);
2801    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2802    /// assert_eq!(vec2, []);
2803    /// ```
2804    #[cfg(not(no_global_oom_handling))]
2805    #[inline]
2806    #[stable(feature = "append", since = "1.4.0")]
2807    pub fn append(&mut self, other: &mut Self) {
2808        unsafe {
2809            self.append_elements(other.as_slice() as _);
2810            other.set_len(0);
2811        }
2812    }
2813
2814    /// Appends elements to `self` from other buffer.
2815    #[cfg(not(no_global_oom_handling))]
2816    #[inline]
2817    unsafe fn append_elements(&mut self, other: *const [T]) {
2818        let count = other.len();
2819        self.reserve(count);
2820        let len = self.len();
2821        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2822        self.len += count;
2823    }
2824
2825    /// Removes the subslice indicated by the given range from the vector,
2826    /// returning a double-ended iterator over the removed subslice.
2827    ///
2828    /// If the iterator is dropped before being fully consumed,
2829    /// it drops the remaining removed elements.
2830    ///
2831    /// The returned iterator keeps a mutable borrow on the vector to optimize
2832    /// its implementation.
2833    ///
2834    /// # Panics
2835    ///
2836    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2837    /// bounded on either end and past the length of the vector.
2838    ///
2839    /// # Leaking
2840    ///
2841    /// If the returned iterator goes out of scope without being dropped (due to
2842    /// [`mem::forget`], for example), the vector may have lost and leaked
2843    /// elements arbitrarily, including elements outside the range.
2844    ///
2845    /// # Examples
2846    ///
2847    /// ```
2848    /// let mut v = vec![1, 2, 3];
2849    /// let u: Vec<_> = v.drain(1..).collect();
2850    /// assert_eq!(v, &[1]);
2851    /// assert_eq!(u, &[2, 3]);
2852    ///
2853    /// // A full range clears the vector, like `clear()` does
2854    /// v.drain(..);
2855    /// assert_eq!(v, &[]);
2856    /// ```
2857    #[stable(feature = "drain", since = "1.6.0")]
2858    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2859    where
2860        R: RangeBounds<usize>,
2861    {
2862        // Memory safety
2863        //
2864        // When the Drain is first created, it shortens the length of
2865        // the source vector to make sure no uninitialized or moved-from elements
2866        // are accessible at all if the Drain's destructor never gets to run.
2867        //
2868        // Drain will ptr::read out the values to remove.
2869        // When finished, remaining tail of the vec is copied back to cover
2870        // the hole, and the vector length is restored to the new length.
2871        //
2872        let len = self.len();
2873        let Range { start, end } = slice::range(range, ..len);
2874
2875        unsafe {
2876            // set self.vec length's to start, to be safe in case Drain is leaked
2877            self.set_len(start);
2878            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2879            Drain {
2880                tail_start: end,
2881                tail_len: len - end,
2882                iter: range_slice.iter(),
2883                vec: NonNull::from(self),
2884            }
2885        }
2886    }
2887
2888    /// Clears the vector, removing all values.
2889    ///
2890    /// Note that this method has no effect on the allocated capacity
2891    /// of the vector.
2892    ///
2893    /// # Examples
2894    ///
2895    /// ```
2896    /// let mut v = vec![1, 2, 3];
2897    ///
2898    /// v.clear();
2899    ///
2900    /// assert!(v.is_empty());
2901    /// ```
2902    #[inline]
2903    #[stable(feature = "rust1", since = "1.0.0")]
2904    pub fn clear(&mut self) {
2905        let elems: *mut [T] = self.as_mut_slice();
2906
2907        // SAFETY:
2908        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2909        // - Setting `self.len` before calling `drop_in_place` means that,
2910        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2911        //   do nothing (leaking the rest of the elements) instead of dropping
2912        //   some twice.
2913        unsafe {
2914            self.len = 0;
2915            ptr::drop_in_place(elems);
2916        }
2917    }
2918
2919    /// Returns the number of elements in the vector, also referred to
2920    /// as its 'length'.
2921    ///
2922    /// # Examples
2923    ///
2924    /// ```
2925    /// let a = vec![1, 2, 3];
2926    /// assert_eq!(a.len(), 3);
2927    /// ```
2928    #[inline]
2929    #[stable(feature = "rust1", since = "1.0.0")]
2930    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2931    #[rustc_confusables("length", "size")]
2932    pub const fn len(&self) -> usize {
2933        let len = self.len;
2934
2935        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2936        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2937        // matches the definition of `T::MAX_SLICE_LEN`.
2938        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2939
2940        len
2941    }
2942
2943    /// Returns `true` if the vector contains no elements.
2944    ///
2945    /// # Examples
2946    ///
2947    /// ```
2948    /// let mut v = Vec::new();
2949    /// assert!(v.is_empty());
2950    ///
2951    /// v.push(1);
2952    /// assert!(!v.is_empty());
2953    /// ```
2954    #[stable(feature = "rust1", since = "1.0.0")]
2955    #[rustc_diagnostic_item = "vec_is_empty"]
2956    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2957    pub const fn is_empty(&self) -> bool {
2958        self.len() == 0
2959    }
2960
2961    /// Splits the collection into two at the given index.
2962    ///
2963    /// Returns a newly allocated vector containing the elements in the range
2964    /// `[at, len)`. After the call, the original vector will be left containing
2965    /// the elements `[0, at)` with its previous capacity unchanged.
2966    ///
2967    /// - If you want to take ownership of the entire contents and capacity of
2968    ///   the vector, see [`mem::take`] or [`mem::replace`].
2969    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2970    /// - If you want to take ownership of an arbitrary subslice, or you don't
2971    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2972    ///
2973    /// # Panics
2974    ///
2975    /// Panics if `at > len`.
2976    ///
2977    /// # Examples
2978    ///
2979    /// ```
2980    /// let mut vec = vec!['a', 'b', 'c'];
2981    /// let vec2 = vec.split_off(1);
2982    /// assert_eq!(vec, ['a']);
2983    /// assert_eq!(vec2, ['b', 'c']);
2984    /// ```
2985    #[cfg(not(no_global_oom_handling))]
2986    #[inline]
2987    #[must_use = "use `.truncate()` if you don't need the other half"]
2988    #[stable(feature = "split_off", since = "1.4.0")]
2989    #[track_caller]
2990    pub fn split_off(&mut self, at: usize) -> Self
2991    where
2992        A: Clone,
2993    {
2994        #[cold]
2995        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2996        #[track_caller]
2997        #[optimize(size)]
2998        fn assert_failed(at: usize, len: usize) -> ! {
2999            panic!("`at` split index (is {at}) should be <= len (is {len})");
3000        }
3001
3002        if at > self.len() {
3003            assert_failed(at, self.len());
3004        }
3005
3006        let other_len = self.len - at;
3007        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
3008
3009        // Unsafely `set_len` and copy items to `other`.
3010        unsafe {
3011            self.set_len(at);
3012            other.set_len(other_len);
3013
3014            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
3015        }
3016        other
3017    }
3018
3019    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3020    ///
3021    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3022    /// difference, with each additional slot filled with the result of
3023    /// calling the closure `f`. The return values from `f` will end up
3024    /// in the `Vec` in the order they have been generated.
3025    ///
3026    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3027    ///
3028    /// This method uses a closure to create new values on every push. If
3029    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3030    /// want to use the [`Default`] trait to generate values, you can
3031    /// pass [`Default::default`] as the second argument.
3032    ///
3033    /// # Panics
3034    ///
3035    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3036    ///
3037    /// # Examples
3038    ///
3039    /// ```
3040    /// let mut vec = vec![1, 2, 3];
3041    /// vec.resize_with(5, Default::default);
3042    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3043    ///
3044    /// let mut vec = vec![];
3045    /// let mut p = 1;
3046    /// vec.resize_with(4, || { p *= 2; p });
3047    /// assert_eq!(vec, [2, 4, 8, 16]);
3048    /// ```
3049    #[cfg(not(no_global_oom_handling))]
3050    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3051    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3052    where
3053        F: FnMut() -> T,
3054    {
3055        let len = self.len();
3056        if new_len > len {
3057            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3058        } else {
3059            self.truncate(new_len);
3060        }
3061    }
3062
3063    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3064    /// `&'a mut [T]`.
3065    ///
3066    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3067    /// has only static references, or none at all, then this may be chosen to be
3068    /// `'static`.
3069    ///
3070    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3071    /// so the leaked allocation may include unused capacity that is not part
3072    /// of the returned slice.
3073    ///
3074    /// This function is mainly useful for data that lives for the remainder of
3075    /// the program's life. Dropping the returned reference will cause a memory
3076    /// leak.
3077    ///
3078    /// # Examples
3079    ///
3080    /// Simple usage:
3081    ///
3082    /// ```
3083    /// let x = vec![1, 2, 3];
3084    /// let static_ref: &'static mut [usize] = x.leak();
3085    /// static_ref[0] += 1;
3086    /// assert_eq!(static_ref, &[2, 2, 3]);
3087    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3088    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3089    /// # drop(unsafe { Box::from_raw(static_ref) });
3090    /// ```
3091    #[stable(feature = "vec_leak", since = "1.47.0")]
3092    #[inline]
3093    pub fn leak<'a>(self) -> &'a mut [T]
3094    where
3095        A: 'a,
3096    {
3097        let mut me = ManuallyDrop::new(self);
3098        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3099    }
3100
3101    /// Returns the remaining spare capacity of the vector as a slice of
3102    /// `MaybeUninit<T>`.
3103    ///
3104    /// The returned slice can be used to fill the vector with data (e.g. by
3105    /// reading from a file) before marking the data as initialized using the
3106    /// [`set_len`] method.
3107    ///
3108    /// [`set_len`]: Vec::set_len
3109    ///
3110    /// # Examples
3111    ///
3112    /// ```
3113    /// // Allocate vector big enough for 10 elements.
3114    /// let mut v = Vec::with_capacity(10);
3115    ///
3116    /// // Fill in the first 3 elements.
3117    /// let uninit = v.spare_capacity_mut();
3118    /// uninit[0].write(0);
3119    /// uninit[1].write(1);
3120    /// uninit[2].write(2);
3121    ///
3122    /// // Mark the first 3 elements of the vector as being initialized.
3123    /// unsafe {
3124    ///     v.set_len(3);
3125    /// }
3126    ///
3127    /// assert_eq!(&v, &[0, 1, 2]);
3128    /// ```
3129    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3130    #[inline]
3131    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3132        // Note:
3133        // This method is not implemented in terms of `split_at_spare_mut`,
3134        // to prevent invalidation of pointers to the buffer.
3135        unsafe {
3136            slice::from_raw_parts_mut(
3137                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3138                self.buf.capacity() - self.len,
3139            )
3140        }
3141    }
3142
3143    /// Returns vector content as a slice of `T`, along with the remaining spare
3144    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3145    ///
3146    /// The returned spare capacity slice can be used to fill the vector with data
3147    /// (e.g. by reading from a file) before marking the data as initialized using
3148    /// the [`set_len`] method.
3149    ///
3150    /// [`set_len`]: Vec::set_len
3151    ///
3152    /// Note that this is a low-level API, which should be used with care for
3153    /// optimization purposes. If you need to append data to a `Vec`
3154    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3155    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3156    /// [`resize_with`], depending on your exact needs.
3157    ///
3158    /// [`push`]: Vec::push
3159    /// [`extend`]: Vec::extend
3160    /// [`extend_from_slice`]: Vec::extend_from_slice
3161    /// [`extend_from_within`]: Vec::extend_from_within
3162    /// [`insert`]: Vec::insert
3163    /// [`append`]: Vec::append
3164    /// [`resize`]: Vec::resize
3165    /// [`resize_with`]: Vec::resize_with
3166    ///
3167    /// # Examples
3168    ///
3169    /// ```
3170    /// #![feature(vec_split_at_spare)]
3171    ///
3172    /// let mut v = vec![1, 1, 2];
3173    ///
3174    /// // Reserve additional space big enough for 10 elements.
3175    /// v.reserve(10);
3176    ///
3177    /// let (init, uninit) = v.split_at_spare_mut();
3178    /// let sum = init.iter().copied().sum::<u32>();
3179    ///
3180    /// // Fill in the next 4 elements.
3181    /// uninit[0].write(sum);
3182    /// uninit[1].write(sum * 2);
3183    /// uninit[2].write(sum * 3);
3184    /// uninit[3].write(sum * 4);
3185    ///
3186    /// // Mark the 4 elements of the vector as being initialized.
3187    /// unsafe {
3188    ///     let len = v.len();
3189    ///     v.set_len(len + 4);
3190    /// }
3191    ///
3192    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3193    /// ```
3194    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3195    #[inline]
3196    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3197        // SAFETY:
3198        // - len is ignored and so never changed
3199        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3200        (init, spare)
3201    }
3202
3203    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3204    ///
3205    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3206    unsafe fn split_at_spare_mut_with_len(
3207        &mut self,
3208    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3209        let ptr = self.as_mut_ptr();
3210        // SAFETY:
3211        // - `ptr` is guaranteed to be valid for `self.len` elements
3212        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3213        // uninitialized
3214        let spare_ptr = unsafe { ptr.add(self.len) };
3215        let spare_ptr = spare_ptr.cast_uninit();
3216        let spare_len = self.buf.capacity() - self.len;
3217
3218        // SAFETY:
3219        // - `ptr` is guaranteed to be valid for `self.len` elements
3220        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3221        unsafe {
3222            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3223            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3224
3225            (initialized, spare, &mut self.len)
3226        }
3227    }
3228
3229    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3230    /// elements in the remainder. `N` must be greater than zero.
3231    ///
3232    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3233    /// nearest multiple with a reallocation or deallocation.
3234    ///
3235    /// This function can be used to reverse [`Vec::into_flattened`].
3236    ///
3237    /// # Examples
3238    ///
3239    /// ```
3240    /// #![feature(vec_into_chunks)]
3241    ///
3242    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3243    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3244    ///
3245    /// let vec = vec![0, 1, 2, 3];
3246    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3247    /// assert!(chunks.is_empty());
3248    ///
3249    /// let flat = vec![0; 8 * 8 * 8];
3250    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3251    /// assert_eq!(reshaped.len(), 1);
3252    /// ```
3253    #[cfg(not(no_global_oom_handling))]
3254    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3255    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3256        const {
3257            assert!(N != 0, "chunk size must be greater than zero");
3258        }
3259
3260        let (len, cap) = (self.len(), self.capacity());
3261
3262        let len_remainder = len % N;
3263        if len_remainder != 0 {
3264            self.truncate(len - len_remainder);
3265        }
3266
3267        let cap_remainder = cap % N;
3268        if !T::IS_ZST && cap_remainder != 0 {
3269            self.buf.shrink_to_fit(cap - cap_remainder);
3270        }
3271
3272        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3273
3274        // SAFETY:
3275        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3276        // - `[T; N]` has the same alignment as `T`
3277        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3278        // - `len / N <= cap / N` because `len <= cap`
3279        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3280        // - `cap / N` fits the size of the allocated memory after shrinking
3281        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3282    }
3283
3284    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3285    /// The item type of the resulting `Vec` needs to have the same size and
3286    /// alignment as the item type of the original `Vec`.
3287    ///
3288    /// # Examples
3289    ///
3290    ///  ```
3291    /// #![feature(vec_recycle, transmutability)]
3292    /// let a: Vec<u8> = vec![0; 100];
3293    /// let capacity = a.capacity();
3294    /// let addr = a.as_ptr().addr();
3295    /// let b: Vec<i8> = a.recycle();
3296    /// assert_eq!(b.len(), 0);
3297    /// assert_eq!(b.capacity(), capacity);
3298    /// assert_eq!(b.as_ptr().addr(), addr);
3299    /// ```
3300    ///
3301    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3302    ///
3303    ///  ```compile_fail,E0277
3304    /// #![feature(vec_recycle, transmutability)]
3305    /// let vec: Vec<[u8; 2]> = Vec::new();
3306    /// let _: Vec<[u8; 1]> = vec.recycle();
3307    /// ```
3308    /// ...or different alignments:
3309    ///
3310    ///  ```compile_fail,E0277
3311    /// #![feature(vec_recycle, transmutability)]
3312    /// let vec: Vec<[u16; 0]> = Vec::new();
3313    /// let _: Vec<[u8; 0]> = vec.recycle();
3314    /// ```
3315    ///
3316    /// However, due to temporary implementation limitations of `Recyclable`,
3317    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3318    /// or other exotic types; e.g.:
3319    ///
3320    /// ```compile_fail,E0277
3321    /// #![feature(vec_recycle, transmutability)]
3322    /// # let inputs = ["a b c", "d e f"];
3323    /// # fn process(_: &[&str]) {}
3324    /// let mut storage: Vec<&[&str]> = Vec::new();
3325    ///
3326    /// for input in inputs {
3327    ///     let mut buffer: Vec<&str> = storage.recycle();
3328    ///     buffer.extend(input.split(" "));
3329    ///     process(&buffer);
3330    ///     storage = buffer.recycle();
3331    /// }
3332    /// ```
3333    #[unstable(feature = "vec_recycle", issue = "148227")]
3334    #[expect(private_bounds)]
3335    pub fn recycle<U>(mut self) -> Vec<U, A>
3336    where
3337        U: Recyclable<T>,
3338    {
3339        self.clear();
3340        const {
3341            // FIXME(const-hack, 146097): compare `Layout`s
3342            assert!(size_of::<T>() == size_of::<U>());
3343            assert!(align_of::<T>() == align_of::<U>());
3344        };
3345        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3346        debug_assert_eq!(length, 0);
3347        // SAFETY:
3348        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3349        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3350        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3351        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3352    }
3353}
3354
3355/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3356///
3357/// # Safety
3358///
3359/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3360unsafe trait Recyclable<From: Sized>: Sized {}
3361
3362#[unstable_feature_bound(transmutability)]
3363// SAFETY: enforced by `TransmuteFrom`
3364unsafe impl<From, To> Recyclable<From> for To
3365where
3366    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3367    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3368{
3369}
3370
3371impl<T: Clone, A: Allocator> Vec<T, A> {
3372    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3373    ///
3374    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3375    /// difference, with each additional slot filled with `value`.
3376    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3377    ///
3378    /// This method requires `T` to implement [`Clone`],
3379    /// in order to be able to clone the passed value.
3380    /// If you need more flexibility (or want to rely on [`Default`] instead of
3381    /// [`Clone`]), use [`Vec::resize_with`].
3382    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3383    ///
3384    /// # Panics
3385    ///
3386    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3387    ///
3388    /// # Examples
3389    ///
3390    /// ```
3391    /// let mut vec = vec!["hello"];
3392    /// vec.resize(3, "world");
3393    /// assert_eq!(vec, ["hello", "world", "world"]);
3394    ///
3395    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3396    /// vec.resize(2, '_');
3397    /// assert_eq!(vec, ['a', 'b']);
3398    /// ```
3399    #[cfg(not(no_global_oom_handling))]
3400    #[stable(feature = "vec_resize", since = "1.5.0")]
3401    pub fn resize(&mut self, new_len: usize, value: T) {
3402        let len = self.len();
3403
3404        if new_len > len {
3405            self.extend_with(new_len - len, value)
3406        } else {
3407            self.truncate(new_len);
3408        }
3409    }
3410
3411    /// Clones and appends all elements in a slice to the `Vec`.
3412    ///
3413    /// Iterates over the slice `other`, clones each element, and then appends
3414    /// it to this `Vec`. The `other` slice is traversed in-order.
3415    ///
3416    /// Note that this function is the same as [`extend`],
3417    /// except that it also works with slice elements that are Clone but not Copy.
3418    /// If Rust gets specialization this function may be deprecated.
3419    ///
3420    /// # Panics
3421    ///
3422    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3423    ///
3424    /// # Examples
3425    ///
3426    /// ```
3427    /// let mut vec = vec![1];
3428    /// vec.extend_from_slice(&[2, 3, 4]);
3429    /// assert_eq!(vec, [1, 2, 3, 4]);
3430    /// ```
3431    ///
3432    /// [`extend`]: Vec::extend
3433    #[cfg(not(no_global_oom_handling))]
3434    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3435    pub fn extend_from_slice(&mut self, other: &[T]) {
3436        self.spec_extend(other.iter())
3437    }
3438
3439    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3440    ///
3441    /// `src` must be a range that can form a valid subslice of the `Vec`.
3442    ///
3443    /// # Panics
3444    ///
3445    /// Panics if starting index is greater than the end index, if the index is
3446    /// greater than the length of the vector, or if the new capacity exceeds
3447    /// `isize::MAX` _bytes_.
3448    ///
3449    /// # Examples
3450    ///
3451    /// ```
3452    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3453    /// characters.extend_from_within(2..);
3454    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3455    ///
3456    /// let mut numbers = vec![0, 1, 2, 3, 4];
3457    /// numbers.extend_from_within(..2);
3458    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3459    ///
3460    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3461    /// strings.extend_from_within(1..=2);
3462    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3463    /// ```
3464    #[cfg(not(no_global_oom_handling))]
3465    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3466    pub fn extend_from_within<R>(&mut self, src: R)
3467    where
3468        R: RangeBounds<usize>,
3469    {
3470        let range = slice::range(src, ..self.len());
3471        self.reserve(range.len());
3472
3473        // SAFETY:
3474        // - `slice::range` guarantees that the given range is valid for indexing self
3475        unsafe {
3476            self.spec_extend_from_within(range);
3477        }
3478    }
3479}
3480
3481impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3482    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3483    ///
3484    /// # Panics
3485    ///
3486    /// Panics if the length of the resulting vector would overflow a `usize`.
3487    ///
3488    /// This is only possible when flattening a vector of arrays of zero-sized
3489    /// types, and thus tends to be irrelevant in practice. If
3490    /// `size_of::<T>() > 0`, this will never panic.
3491    ///
3492    /// # Examples
3493    ///
3494    /// ```
3495    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3496    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3497    ///
3498    /// let mut flattened = vec.into_flattened();
3499    /// assert_eq!(flattened.pop(), Some(6));
3500    /// ```
3501    #[stable(feature = "slice_flatten", since = "1.80.0")]
3502    pub fn into_flattened(self) -> Vec<T, A> {
3503        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3504        let (new_len, new_cap) = if T::IS_ZST {
3505            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3506        } else {
3507            // SAFETY:
3508            // - `cap * N` cannot overflow because the allocation is already in
3509            // the address space.
3510            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3511            // valid elements in the allocation.
3512            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3513        };
3514        // SAFETY:
3515        // - `ptr` was allocated by `self`
3516        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3517        // - `new_cap` refers to the same sized allocation as `cap` because
3518        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3519        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3520        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3521    }
3522}
3523
3524impl<T: Clone, A: Allocator> Vec<T, A> {
3525    #[cfg(not(no_global_oom_handling))]
3526    /// Extend the vector by `n` clones of value.
3527    fn extend_with(&mut self, n: usize, value: T) {
3528        self.reserve(n);
3529
3530        unsafe {
3531            let mut ptr = self.as_mut_ptr().add(self.len());
3532            // Use SetLenOnDrop to work around bug where compiler
3533            // might not realize the store through `ptr` through self.set_len()
3534            // don't alias.
3535            let mut local_len = SetLenOnDrop::new(&mut self.len);
3536
3537            // Write all elements except the last one
3538            for _ in 1..n {
3539                ptr::write(ptr, value.clone());
3540                ptr = ptr.add(1);
3541                // Increment the length in every step in case clone() panics
3542                local_len.increment_len(1);
3543            }
3544
3545            if n > 0 {
3546                // We can write the last element directly without cloning needlessly
3547                ptr::write(ptr, value);
3548                local_len.increment_len(1);
3549            }
3550
3551            // len set by scope guard
3552        }
3553    }
3554}
3555
3556impl<T: PartialEq, A: Allocator> Vec<T, A> {
3557    /// Removes consecutive repeated elements in the vector according to the
3558    /// [`PartialEq`] trait implementation.
3559    ///
3560    /// If the vector is sorted, this removes all duplicates.
3561    ///
3562    /// # Examples
3563    ///
3564    /// ```
3565    /// let mut vec = vec![1, 2, 2, 3, 2];
3566    ///
3567    /// vec.dedup();
3568    ///
3569    /// assert_eq!(vec, [1, 2, 3, 2]);
3570    /// ```
3571    #[stable(feature = "rust1", since = "1.0.0")]
3572    #[inline]
3573    pub fn dedup(&mut self) {
3574        self.dedup_by(|a, b| a == b)
3575    }
3576}
3577
3578////////////////////////////////////////////////////////////////////////////////
3579// Internal methods and functions
3580////////////////////////////////////////////////////////////////////////////////
3581
3582#[doc(hidden)]
3583#[cfg(not(no_global_oom_handling))]
3584#[stable(feature = "rust1", since = "1.0.0")]
3585#[rustc_diagnostic_item = "vec_from_elem"]
3586pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3587    <T as SpecFromElem>::from_elem(elem, n, Global)
3588}
3589
3590#[doc(hidden)]
3591#[cfg(not(no_global_oom_handling))]
3592#[unstable(feature = "allocator_api", issue = "32838")]
3593pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3594    <T as SpecFromElem>::from_elem(elem, n, alloc)
3595}
3596
3597#[cfg(not(no_global_oom_handling))]
3598trait ExtendFromWithinSpec {
3599    /// # Safety
3600    ///
3601    /// - `src` needs to be valid index
3602    /// - `self.capacity() - self.len()` must be `>= src.len()`
3603    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3604}
3605
3606#[cfg(not(no_global_oom_handling))]
3607impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3608    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3609        // SAFETY:
3610        // - len is increased only after initializing elements
3611        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3612
3613        // SAFETY:
3614        // - caller guarantees that src is a valid index
3615        let to_clone = unsafe { this.get_unchecked(src) };
3616
3617        iter::zip(to_clone, spare)
3618            .map(|(src, dst)| dst.write(src.clone()))
3619            // Note:
3620            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3621            // - len is increased after each element to prevent leaks (see issue #82533)
3622            .for_each(|_| *len += 1);
3623    }
3624}
3625
3626#[cfg(not(no_global_oom_handling))]
3627impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3628    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3629        let count = src.len();
3630        {
3631            let (init, spare) = self.split_at_spare_mut();
3632
3633            // SAFETY:
3634            // - caller guarantees that `src` is a valid index
3635            let source = unsafe { init.get_unchecked(src) };
3636
3637            // SAFETY:
3638            // - Both pointers are created from unique slice references (`&mut [_]`)
3639            //   so they are valid and do not overlap.
3640            // - Elements implement `TrivialClone` so this is equivalent to calling
3641            //   `clone` on every one of them.
3642            // - `count` is equal to the len of `source`, so source is valid for
3643            //   `count` reads
3644            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3645            //   is valid for `count` writes
3646            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3647        }
3648
3649        // SAFETY:
3650        // - The elements were just initialized by `copy_nonoverlapping`
3651        self.len += count;
3652    }
3653}
3654
3655////////////////////////////////////////////////////////////////////////////////
3656// Common trait implementations for Vec
3657////////////////////////////////////////////////////////////////////////////////
3658
3659#[stable(feature = "rust1", since = "1.0.0")]
3660impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3661    type Target = [T];
3662
3663    #[inline]
3664    fn deref(&self) -> &[T] {
3665        self.as_slice()
3666    }
3667}
3668
3669#[stable(feature = "rust1", since = "1.0.0")]
3670impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3671    #[inline]
3672    fn deref_mut(&mut self) -> &mut [T] {
3673        self.as_mut_slice()
3674    }
3675}
3676
3677#[unstable(feature = "deref_pure_trait", issue = "87121")]
3678unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3679
3680#[cfg(not(no_global_oom_handling))]
3681#[stable(feature = "rust1", since = "1.0.0")]
3682impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3683    fn clone(&self) -> Self {
3684        let alloc = self.allocator().clone();
3685        <[T]>::to_vec_in(&**self, alloc)
3686    }
3687
3688    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3689    ///
3690    /// This method is preferred over simply assigning `source.clone()` to `self`,
3691    /// as it avoids reallocation if possible. Additionally, if the element type
3692    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3693    /// elements as well.
3694    ///
3695    /// # Examples
3696    ///
3697    /// ```
3698    /// let x = vec![5, 6, 7];
3699    /// let mut y = vec![8, 9, 10];
3700    /// let yp: *const i32 = y.as_ptr();
3701    ///
3702    /// y.clone_from(&x);
3703    ///
3704    /// // The value is the same
3705    /// assert_eq!(x, y);
3706    ///
3707    /// // And no reallocation occurred
3708    /// assert_eq!(yp, y.as_ptr());
3709    /// ```
3710    fn clone_from(&mut self, source: &Self) {
3711        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3712    }
3713}
3714
3715/// The hash of a vector is the same as that of the corresponding slice,
3716/// as required by the `core::borrow::Borrow` implementation.
3717///
3718/// ```
3719/// use std::hash::BuildHasher;
3720///
3721/// let b = std::hash::RandomState::new();
3722/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3723/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3724/// assert_eq!(b.hash_one(v), b.hash_one(s));
3725/// ```
3726#[stable(feature = "rust1", since = "1.0.0")]
3727impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3728    #[inline]
3729    fn hash<H: Hasher>(&self, state: &mut H) {
3730        Hash::hash(&**self, state)
3731    }
3732}
3733
3734#[stable(feature = "rust1", since = "1.0.0")]
3735impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3736    type Output = I::Output;
3737
3738    #[inline]
3739    fn index(&self, index: I) -> &Self::Output {
3740        Index::index(&**self, index)
3741    }
3742}
3743
3744#[stable(feature = "rust1", since = "1.0.0")]
3745impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3746    #[inline]
3747    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3748        IndexMut::index_mut(&mut **self, index)
3749    }
3750}
3751
3752/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3753///
3754/// # Allocation behavior
3755///
3756/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3757/// That also applies to this trait impl.
3758///
3759/// **Note:** This section covers implementation details and is therefore exempt from
3760/// stability guarantees.
3761///
3762/// Vec may use any or none of the following strategies,
3763/// depending on the supplied iterator:
3764///
3765/// * preallocate based on [`Iterator::size_hint()`]
3766///   * and panic if the number of items is outside the provided lower/upper bounds
3767/// * use an amortized growth strategy similar to `pushing` one item at a time
3768/// * perform the iteration in-place on the original allocation backing the iterator
3769///
3770/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3771/// consumption and improves cache locality. But when big, short-lived allocations are created,
3772/// only a small fraction of their items get collected, no further use is made of the spare capacity
3773/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3774/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3775/// footprint.
3776///
3777/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3778/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3779/// the size of the long-lived struct.
3780///
3781/// [owned slice]: Box
3782///
3783/// ```rust
3784/// # use std::sync::Mutex;
3785/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3786///
3787/// for i in 0..10 {
3788///     let big_temporary: Vec<u16> = (0..1024).collect();
3789///     // discard most items
3790///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3791///     // without this a lot of unused capacity might be moved into the global
3792///     result.shrink_to_fit();
3793///     LONG_LIVED.lock().unwrap().push(result);
3794/// }
3795/// ```
3796#[cfg(not(no_global_oom_handling))]
3797#[stable(feature = "rust1", since = "1.0.0")]
3798impl<T> FromIterator<T> for Vec<T> {
3799    #[inline]
3800    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3801        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3802    }
3803}
3804
3805#[stable(feature = "rust1", since = "1.0.0")]
3806impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3807    type Item = T;
3808    type IntoIter = IntoIter<T, A>;
3809
3810    /// Creates a consuming iterator, that is, one that moves each value out of
3811    /// the vector (from start to end). The vector cannot be used after calling
3812    /// this.
3813    ///
3814    /// # Examples
3815    ///
3816    /// ```
3817    /// let v = vec!["a".to_string(), "b".to_string()];
3818    /// let mut v_iter = v.into_iter();
3819    ///
3820    /// let first_element: Option<String> = v_iter.next();
3821    ///
3822    /// assert_eq!(first_element, Some("a".to_string()));
3823    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3824    /// assert_eq!(v_iter.next(), None);
3825    /// ```
3826    #[inline]
3827    fn into_iter(self) -> Self::IntoIter {
3828        unsafe {
3829            let me = ManuallyDrop::new(self);
3830            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3831            let buf = me.buf.non_null();
3832            let begin = buf.as_ptr();
3833            let end = if T::IS_ZST {
3834                begin.wrapping_byte_add(me.len())
3835            } else {
3836                begin.add(me.len()) as *const T
3837            };
3838            let cap = me.buf.capacity();
3839            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3840        }
3841    }
3842}
3843
3844#[stable(feature = "rust1", since = "1.0.0")]
3845impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3846    type Item = &'a T;
3847    type IntoIter = slice::Iter<'a, T>;
3848
3849    fn into_iter(self) -> Self::IntoIter {
3850        self.iter()
3851    }
3852}
3853
3854#[stable(feature = "rust1", since = "1.0.0")]
3855impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3856    type Item = &'a mut T;
3857    type IntoIter = slice::IterMut<'a, T>;
3858
3859    fn into_iter(self) -> Self::IntoIter {
3860        self.iter_mut()
3861    }
3862}
3863
3864#[cfg(not(no_global_oom_handling))]
3865#[stable(feature = "rust1", since = "1.0.0")]
3866impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3867    #[inline]
3868    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3869        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3870    }
3871
3872    #[inline]
3873    fn extend_one(&mut self, item: T) {
3874        self.push(item);
3875    }
3876
3877    #[inline]
3878    fn extend_reserve(&mut self, additional: usize) {
3879        self.reserve(additional);
3880    }
3881
3882    #[inline]
3883    unsafe fn extend_one_unchecked(&mut self, item: T) {
3884        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3885        unsafe {
3886            let len = self.len();
3887            ptr::write(self.as_mut_ptr().add(len), item);
3888            self.set_len(len + 1);
3889        }
3890    }
3891}
3892
3893impl<T, A: Allocator> Vec<T, A> {
3894    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3895    // they have no further optimizations to apply
3896    #[cfg(not(no_global_oom_handling))]
3897    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3898        // This is the case for a general iterator.
3899        //
3900        // This function should be the moral equivalent of:
3901        //
3902        //      for item in iterator {
3903        //          self.push(item);
3904        //      }
3905        while let Some(element) = iterator.next() {
3906            let len = self.len();
3907            if len == self.capacity() {
3908                let (lower, _) = iterator.size_hint();
3909                self.reserve(lower.saturating_add(1));
3910            }
3911            unsafe {
3912                ptr::write(self.as_mut_ptr().add(len), element);
3913                // Since next() executes user code which can panic we have to bump the length
3914                // after each step.
3915                // NB can't overflow since we would have had to alloc the address space
3916                self.set_len(len + 1);
3917            }
3918        }
3919    }
3920
3921    // specific extend for `TrustedLen` iterators, called both by the specializations
3922    // and internal places where resolving specialization makes compilation slower
3923    #[cfg(not(no_global_oom_handling))]
3924    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3925        let (low, high) = iterator.size_hint();
3926        if let Some(additional) = high {
3927            debug_assert_eq!(
3928                low,
3929                additional,
3930                "TrustedLen iterator's size hint is not exact: {:?}",
3931                (low, high)
3932            );
3933            self.reserve(additional);
3934            unsafe {
3935                let ptr = self.as_mut_ptr();
3936                let mut local_len = SetLenOnDrop::new(&mut self.len);
3937                iterator.for_each(move |element| {
3938                    ptr::write(ptr.add(local_len.current_len()), element);
3939                    // Since the loop executes user code which can panic we have to update
3940                    // the length every step to correctly drop what we've written.
3941                    // NB can't overflow since we would have had to alloc the address space
3942                    local_len.increment_len(1);
3943                });
3944            }
3945        } else {
3946            // Per TrustedLen contract a `None` upper bound means that the iterator length
3947            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3948            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3949            // This avoids additional codegen for a fallback code path which would eventually
3950            // panic anyway.
3951            panic!("capacity overflow");
3952        }
3953    }
3954
3955    /// Creates a splicing iterator that replaces the specified range in the vector
3956    /// with the given `replace_with` iterator and yields the removed items.
3957    /// `replace_with` does not need to be the same length as `range`.
3958    ///
3959    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3960    ///
3961    /// It is unspecified how many elements are removed from the vector
3962    /// if the `Splice` value is leaked.
3963    ///
3964    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3965    ///
3966    /// This is optimal if:
3967    ///
3968    /// * The tail (elements in the vector after `range`) is empty,
3969    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3970    /// * or the lower bound of its `size_hint()` is exact.
3971    ///
3972    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3973    ///
3974    /// # Panics
3975    ///
3976    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3977    /// bounded on either end and past the length of the vector.
3978    ///
3979    /// # Examples
3980    ///
3981    /// ```
3982    /// let mut v = vec![1, 2, 3, 4];
3983    /// let new = [7, 8, 9];
3984    /// let u: Vec<_> = v.splice(1..3, new).collect();
3985    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3986    /// assert_eq!(u, [2, 3]);
3987    /// ```
3988    ///
3989    /// Using `splice` to insert new items into a vector efficiently at a specific position
3990    /// indicated by an empty range:
3991    ///
3992    /// ```
3993    /// let mut v = vec![1, 5];
3994    /// let new = [2, 3, 4];
3995    /// v.splice(1..1, new);
3996    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3997    /// ```
3998    #[cfg(not(no_global_oom_handling))]
3999    #[inline]
4000    #[stable(feature = "vec_splice", since = "1.21.0")]
4001    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
4002    where
4003        R: RangeBounds<usize>,
4004        I: IntoIterator<Item = T>,
4005    {
4006        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
4007    }
4008
4009    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
4010    ///
4011    /// If the closure returns `true`, the element is removed from the vector
4012    /// and yielded. If the closure returns `false`, or panics, the element
4013    /// remains in the vector and will not be yielded.
4014    ///
4015    /// Only elements that fall in the provided range are considered for extraction, but any elements
4016    /// after the range will still have to be moved if any element has been extracted.
4017    ///
4018    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
4019    /// or the iteration short-circuits, then the remaining elements will be retained.
4020    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
4021    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
4022    ///
4023    /// [`retain_mut`]: Vec::retain_mut
4024    ///
4025    /// Using this method is equivalent to the following code:
4026    ///
4027    /// ```
4028    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4029    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4030    /// # let mut vec2 = vec.clone();
4031    /// # let range = 1..5;
4032    /// let mut i = range.start;
4033    /// let end_items = vec.len() - range.end;
4034    /// # let mut extracted = vec![];
4035    ///
4036    /// while i < vec.len() - end_items {
4037    ///     if some_predicate(&mut vec[i]) {
4038    ///         let val = vec.remove(i);
4039    ///         // your code here
4040    /// #         extracted.push(val);
4041    ///     } else {
4042    ///         i += 1;
4043    ///     }
4044    /// }
4045    ///
4046    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4047    /// # assert_eq!(vec, vec2);
4048    /// # assert_eq!(extracted, extracted2);
4049    /// ```
4050    ///
4051    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4052    /// because it can backshift the elements of the array in bulk.
4053    ///
4054    /// The iterator also lets you mutate the value of each element in the
4055    /// closure, regardless of whether you choose to keep or remove it.
4056    ///
4057    /// # Panics
4058    ///
4059    /// If `range` is out of bounds.
4060    ///
4061    /// # Examples
4062    ///
4063    /// Splitting a vector into even and odd values, reusing the original vector:
4064    ///
4065    /// ```
4066    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4067    ///
4068    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4069    /// let odds = numbers;
4070    ///
4071    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4072    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4073    /// ```
4074    ///
4075    /// Using the range argument to only process a part of the vector:
4076    ///
4077    /// ```
4078    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4079    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4080    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4081    /// assert_eq!(ones.len(), 3);
4082    /// ```
4083    #[stable(feature = "extract_if", since = "1.87.0")]
4084    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4085    where
4086        F: FnMut(&mut T) -> bool,
4087        R: RangeBounds<usize>,
4088    {
4089        ExtractIf::new(self, filter, range)
4090    }
4091}
4092
4093/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4094///
4095/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4096/// append the entire slice at once.
4097///
4098/// [`copy_from_slice`]: slice::copy_from_slice
4099#[cfg(not(no_global_oom_handling))]
4100#[stable(feature = "extend_ref", since = "1.2.0")]
4101impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4102    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4103        self.spec_extend(iter.into_iter())
4104    }
4105
4106    #[inline]
4107    fn extend_one(&mut self, &item: &'a T) {
4108        self.push(item);
4109    }
4110
4111    #[inline]
4112    fn extend_reserve(&mut self, additional: usize) {
4113        self.reserve(additional);
4114    }
4115
4116    #[inline]
4117    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4118        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4119        unsafe {
4120            let len = self.len();
4121            ptr::write(self.as_mut_ptr().add(len), item);
4122            self.set_len(len + 1);
4123        }
4124    }
4125}
4126
4127/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4128#[stable(feature = "rust1", since = "1.0.0")]
4129impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4130where
4131    T: PartialOrd,
4132    A1: Allocator,
4133    A2: Allocator,
4134{
4135    #[inline]
4136    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4137        PartialOrd::partial_cmp(&**self, &**other)
4138    }
4139}
4140
4141#[stable(feature = "rust1", since = "1.0.0")]
4142impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4143
4144/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4145#[stable(feature = "rust1", since = "1.0.0")]
4146impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4147    #[inline]
4148    fn cmp(&self, other: &Self) -> Ordering {
4149        Ord::cmp(&**self, &**other)
4150    }
4151}
4152
4153#[stable(feature = "rust1", since = "1.0.0")]
4154unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4155    fn drop(&mut self) {
4156        unsafe {
4157            // use drop for [T]
4158            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4159            // could avoid questions of validity in certain cases
4160            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4161        }
4162        // RawVec handles deallocation
4163    }
4164}
4165
4166#[stable(feature = "rust1", since = "1.0.0")]
4167#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4168impl<T> const Default for Vec<T> {
4169    /// Creates an empty `Vec<T>`.
4170    ///
4171    /// The vector will not allocate until elements are pushed onto it.
4172    fn default() -> Vec<T> {
4173        Vec::new()
4174    }
4175}
4176
4177#[stable(feature = "rust1", since = "1.0.0")]
4178impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4179    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4180        fmt::Debug::fmt(&**self, f)
4181    }
4182}
4183
4184#[stable(feature = "rust1", since = "1.0.0")]
4185impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4186    fn as_ref(&self) -> &Vec<T, A> {
4187        self
4188    }
4189}
4190
4191#[stable(feature = "vec_as_mut", since = "1.5.0")]
4192impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4193    fn as_mut(&mut self) -> &mut Vec<T, A> {
4194        self
4195    }
4196}
4197
4198#[stable(feature = "rust1", since = "1.0.0")]
4199impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4200    fn as_ref(&self) -> &[T] {
4201        self
4202    }
4203}
4204
4205#[stable(feature = "vec_as_mut", since = "1.5.0")]
4206impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4207    fn as_mut(&mut self) -> &mut [T] {
4208        self
4209    }
4210}
4211
4212#[cfg(not(no_global_oom_handling))]
4213#[stable(feature = "rust1", since = "1.0.0")]
4214impl<T: Clone> From<&[T]> for Vec<T> {
4215    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4216    ///
4217    /// # Examples
4218    ///
4219    /// ```
4220    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4221    /// ```
4222    fn from(s: &[T]) -> Vec<T> {
4223        s.to_vec()
4224    }
4225}
4226
4227#[cfg(not(no_global_oom_handling))]
4228#[stable(feature = "vec_from_mut", since = "1.19.0")]
4229impl<T: Clone> From<&mut [T]> for Vec<T> {
4230    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4231    ///
4232    /// # Examples
4233    ///
4234    /// ```
4235    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4236    /// ```
4237    fn from(s: &mut [T]) -> Vec<T> {
4238        s.to_vec()
4239    }
4240}
4241
4242#[cfg(not(no_global_oom_handling))]
4243#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4244impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4245    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4246    ///
4247    /// # Examples
4248    ///
4249    /// ```
4250    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4251    /// ```
4252    fn from(s: &[T; N]) -> Vec<T> {
4253        Self::from(s.as_slice())
4254    }
4255}
4256
4257#[cfg(not(no_global_oom_handling))]
4258#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4259impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4260    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4261    ///
4262    /// # Examples
4263    ///
4264    /// ```
4265    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4266    /// ```
4267    fn from(s: &mut [T; N]) -> Vec<T> {
4268        Self::from(s.as_mut_slice())
4269    }
4270}
4271
4272#[cfg(not(no_global_oom_handling))]
4273#[stable(feature = "vec_from_array", since = "1.44.0")]
4274impl<T, const N: usize> From<[T; N]> for Vec<T> {
4275    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4276    ///
4277    /// # Examples
4278    ///
4279    /// ```
4280    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4281    /// ```
4282    fn from(s: [T; N]) -> Vec<T> {
4283        <[T]>::into_vec(Box::new(s))
4284    }
4285}
4286
4287#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4288impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4289where
4290    [T]: ToOwned<Owned = Vec<T>>,
4291{
4292    /// Converts a clone-on-write slice into a vector.
4293    ///
4294    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4295    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4296    /// filled by cloning `s`'s items into it.
4297    ///
4298    /// # Examples
4299    ///
4300    /// ```
4301    /// # use std::borrow::Cow;
4302    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4303    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4304    /// assert_eq!(Vec::from(o), Vec::from(b));
4305    /// ```
4306    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4307        s.into_owned()
4308    }
4309}
4310
4311// note: test pulls in std, which causes errors here
4312#[stable(feature = "vec_from_box", since = "1.18.0")]
4313impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4314    /// Converts a boxed slice into a vector by transferring ownership of
4315    /// the existing heap allocation.
4316    ///
4317    /// # Examples
4318    ///
4319    /// ```
4320    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4321    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4322    /// ```
4323    fn from(s: Box<[T], A>) -> Self {
4324        s.into_vec()
4325    }
4326}
4327
4328// note: test pulls in std, which causes errors here
4329#[cfg(not(no_global_oom_handling))]
4330#[stable(feature = "box_from_vec", since = "1.20.0")]
4331impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4332    /// Converts a vector into a boxed slice.
4333    ///
4334    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4335    ///
4336    /// [owned slice]: Box
4337    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4338    ///
4339    /// # Examples
4340    ///
4341    /// ```
4342    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4343    /// ```
4344    ///
4345    /// Any excess capacity is removed:
4346    /// ```
4347    /// let mut vec = Vec::with_capacity(10);
4348    /// vec.extend([1, 2, 3]);
4349    ///
4350    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4351    /// ```
4352    fn from(v: Vec<T, A>) -> Self {
4353        v.into_boxed_slice()
4354    }
4355}
4356
4357#[cfg(not(no_global_oom_handling))]
4358#[stable(feature = "rust1", since = "1.0.0")]
4359impl From<&str> for Vec<u8> {
4360    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4361    ///
4362    /// # Examples
4363    ///
4364    /// ```
4365    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4366    /// ```
4367    fn from(s: &str) -> Vec<u8> {
4368        From::from(s.as_bytes())
4369    }
4370}
4371
4372#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4373impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4374    type Error = Vec<T, A>;
4375
4376    /// Gets the entire contents of the `Vec<T>` as an array,
4377    /// if its size exactly matches that of the requested array.
4378    ///
4379    /// # Examples
4380    ///
4381    /// ```
4382    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4383    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4384    /// ```
4385    ///
4386    /// If the length doesn't match, the input comes back in `Err`:
4387    /// ```
4388    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4389    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4390    /// ```
4391    ///
4392    /// If you're fine with just getting a prefix of the `Vec<T>`,
4393    /// you can call [`.truncate(N)`](Vec::truncate) first.
4394    /// ```
4395    /// let mut v = String::from("hello world").into_bytes();
4396    /// v.sort();
4397    /// v.truncate(2);
4398    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4399    /// assert_eq!(a, b' ');
4400    /// assert_eq!(b, b'd');
4401    /// ```
4402    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4403        if vec.len() != N {
4404            return Err(vec);
4405        }
4406
4407        // SAFETY: `.set_len(0)` is always sound.
4408        unsafe { vec.set_len(0) };
4409
4410        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4411        // the alignment the array needs is the same as the items.
4412        // We checked earlier that we have sufficient items.
4413        // The items will not double-drop as the `set_len`
4414        // tells the `Vec` not to also drop them.
4415        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4416        Ok(array)
4417    }
4418}