core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::clone::TrivialClone;
10use crate::cmp::Ordering::{self, Equal, Greater, Less};
11use crate::intrinsics::{exact_div, unchecked_sub};
12use crate::mem::{self, MaybeUninit, SizedTypeProperties};
13use crate::num::NonZero;
14use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
15use crate::panic::const_panic;
16use crate::simd::{self, Simd};
17use crate::ub_checks::assert_unsafe_precondition;
18use crate::{fmt, hint, ptr, range, slice};
19
20#[unstable(
21    feature = "slice_internals",
22    issue = "none",
23    reason = "exposed from core to be reused in std; use the memchr crate"
24)]
25#[doc(hidden)]
26/// Pure Rust memchr implementation, taken from rust-memchr
27pub mod memchr;
28
29#[unstable(
30    feature = "slice_internals",
31    issue = "none",
32    reason = "exposed from core to be reused in std;"
33)]
34#[doc(hidden)]
35pub mod sort;
36
37mod ascii;
38mod cmp;
39pub(crate) mod index;
40mod iter;
41mod raw;
42mod rotate;
43mod specialize;
44
45#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
46pub use ascii::EscapeAscii;
47#[unstable(feature = "str_internals", issue = "none")]
48#[doc(hidden)]
49pub use ascii::is_ascii_simple;
50#[stable(feature = "slice_get_slice", since = "1.28.0")]
51pub use index::SliceIndex;
52#[unstable(feature = "slice_range", issue = "76393")]
53pub use index::{range, try_range};
54#[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
55pub use iter::ArrayWindows;
56#[stable(feature = "slice_group_by", since = "1.77.0")]
57pub use iter::{ChunkBy, ChunkByMut};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use iter::{Chunks, ChunksMut, Windows};
60#[stable(feature = "chunks_exact", since = "1.31.0")]
61pub use iter::{ChunksExact, ChunksExactMut};
62#[stable(feature = "rust1", since = "1.0.0")]
63pub use iter::{Iter, IterMut};
64#[stable(feature = "rchunks", since = "1.31.0")]
65pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
66#[stable(feature = "slice_rsplit", since = "1.27.0")]
67pub use iter::{RSplit, RSplitMut};
68#[stable(feature = "rust1", since = "1.0.0")]
69pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
70#[stable(feature = "split_inclusive", since = "1.51.0")]
71pub use iter::{SplitInclusive, SplitInclusiveMut};
72#[stable(feature = "from_ref", since = "1.28.0")]
73pub use raw::{from_mut, from_ref};
74#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
75pub use raw::{from_mut_ptr_range, from_ptr_range};
76#[stable(feature = "rust1", since = "1.0.0")]
77pub use raw::{from_raw_parts, from_raw_parts_mut};
78
79/// Calculates the direction and split point of a one-sided range.
80///
81/// This is a helper function for `split_off` and `split_off_mut` that returns
82/// the direction of the split (front or back) as well as the index at
83/// which to split. Returns `None` if the split index would overflow.
84#[inline]
85fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
86    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
87
88    Some(match range.bound() {
89        (StartInclusive, i) => (Direction::Back, i),
90        (End, i) => (Direction::Front, i),
91        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
92    })
93}
94
95enum Direction {
96    Front,
97    Back,
98}
99
100impl<T> [T] {
101    /// Returns the number of elements in the slice.
102    ///
103    /// # Examples
104    ///
105    /// ```
106    /// let a = [1, 2, 3];
107    /// assert_eq!(a.len(), 3);
108    /// ```
109    #[lang = "slice_len_fn"]
110    #[stable(feature = "rust1", since = "1.0.0")]
111    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
112    #[rustc_no_implicit_autorefs]
113    #[inline]
114    #[must_use]
115    pub const fn len(&self) -> usize {
116        ptr::metadata(self)
117    }
118
119    /// Returns `true` if the slice has a length of 0.
120    ///
121    /// # Examples
122    ///
123    /// ```
124    /// let a = [1, 2, 3];
125    /// assert!(!a.is_empty());
126    ///
127    /// let b: &[i32] = &[];
128    /// assert!(b.is_empty());
129    /// ```
130    #[stable(feature = "rust1", since = "1.0.0")]
131    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
132    #[rustc_no_implicit_autorefs]
133    #[inline]
134    #[must_use]
135    pub const fn is_empty(&self) -> bool {
136        self.len() == 0
137    }
138
139    /// Returns the first element of the slice, or `None` if it is empty.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// let v = [10, 40, 30];
145    /// assert_eq!(Some(&10), v.first());
146    ///
147    /// let w: &[i32] = &[];
148    /// assert_eq!(None, w.first());
149    /// ```
150    #[stable(feature = "rust1", since = "1.0.0")]
151    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
152    #[inline]
153    #[must_use]
154    pub const fn first(&self) -> Option<&T> {
155        if let [first, ..] = self { Some(first) } else { None }
156    }
157
158    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// let x = &mut [0, 1, 2];
164    ///
165    /// if let Some(first) = x.first_mut() {
166    ///     *first = 5;
167    /// }
168    /// assert_eq!(x, &[5, 1, 2]);
169    ///
170    /// let y: &mut [i32] = &mut [];
171    /// assert_eq!(None, y.first_mut());
172    /// ```
173    #[stable(feature = "rust1", since = "1.0.0")]
174    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
175    #[inline]
176    #[must_use]
177    pub const fn first_mut(&mut self) -> Option<&mut T> {
178        if let [first, ..] = self { Some(first) } else { None }
179    }
180
181    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
182    ///
183    /// # Examples
184    ///
185    /// ```
186    /// let x = &[0, 1, 2];
187    ///
188    /// if let Some((first, elements)) = x.split_first() {
189    ///     assert_eq!(first, &0);
190    ///     assert_eq!(elements, &[1, 2]);
191    /// }
192    /// ```
193    #[stable(feature = "slice_splits", since = "1.5.0")]
194    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
195    #[inline]
196    #[must_use]
197    pub const fn split_first(&self) -> Option<(&T, &[T])> {
198        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
199    }
200
201    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
202    ///
203    /// # Examples
204    ///
205    /// ```
206    /// let x = &mut [0, 1, 2];
207    ///
208    /// if let Some((first, elements)) = x.split_first_mut() {
209    ///     *first = 3;
210    ///     elements[0] = 4;
211    ///     elements[1] = 5;
212    /// }
213    /// assert_eq!(x, &[3, 4, 5]);
214    /// ```
215    #[stable(feature = "slice_splits", since = "1.5.0")]
216    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
217    #[inline]
218    #[must_use]
219    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
220        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
221    }
222
223    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
224    ///
225    /// # Examples
226    ///
227    /// ```
228    /// let x = &[0, 1, 2];
229    ///
230    /// if let Some((last, elements)) = x.split_last() {
231    ///     assert_eq!(last, &2);
232    ///     assert_eq!(elements, &[0, 1]);
233    /// }
234    /// ```
235    #[stable(feature = "slice_splits", since = "1.5.0")]
236    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
237    #[inline]
238    #[must_use]
239    pub const fn split_last(&self) -> Option<(&T, &[T])> {
240        if let [init @ .., last] = self { Some((last, init)) } else { None }
241    }
242
243    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// let x = &mut [0, 1, 2];
249    ///
250    /// if let Some((last, elements)) = x.split_last_mut() {
251    ///     *last = 3;
252    ///     elements[0] = 4;
253    ///     elements[1] = 5;
254    /// }
255    /// assert_eq!(x, &[4, 5, 3]);
256    /// ```
257    #[stable(feature = "slice_splits", since = "1.5.0")]
258    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
259    #[inline]
260    #[must_use]
261    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
262        if let [init @ .., last] = self { Some((last, init)) } else { None }
263    }
264
265    /// Returns the last element of the slice, or `None` if it is empty.
266    ///
267    /// # Examples
268    ///
269    /// ```
270    /// let v = [10, 40, 30];
271    /// assert_eq!(Some(&30), v.last());
272    ///
273    /// let w: &[i32] = &[];
274    /// assert_eq!(None, w.last());
275    /// ```
276    #[stable(feature = "rust1", since = "1.0.0")]
277    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
278    #[inline]
279    #[must_use]
280    pub const fn last(&self) -> Option<&T> {
281        if let [.., last] = self { Some(last) } else { None }
282    }
283
284    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
285    ///
286    /// # Examples
287    ///
288    /// ```
289    /// let x = &mut [0, 1, 2];
290    ///
291    /// if let Some(last) = x.last_mut() {
292    ///     *last = 10;
293    /// }
294    /// assert_eq!(x, &[0, 1, 10]);
295    ///
296    /// let y: &mut [i32] = &mut [];
297    /// assert_eq!(None, y.last_mut());
298    /// ```
299    #[stable(feature = "rust1", since = "1.0.0")]
300    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
301    #[inline]
302    #[must_use]
303    pub const fn last_mut(&mut self) -> Option<&mut T> {
304        if let [.., last] = self { Some(last) } else { None }
305    }
306
307    /// Returns an array reference to the first `N` items in the slice.
308    ///
309    /// If the slice is not at least `N` in length, this will return `None`.
310    ///
311    /// # Examples
312    ///
313    /// ```
314    /// let u = [10, 40, 30];
315    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
316    ///
317    /// let v: &[i32] = &[10];
318    /// assert_eq!(None, v.first_chunk::<2>());
319    ///
320    /// let w: &[i32] = &[];
321    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
322    /// ```
323    #[inline]
324    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
325    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
326    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
327        if self.len() < N {
328            None
329        } else {
330            // SAFETY: We explicitly check for the correct number of elements,
331            //   and do not let the reference outlive the slice.
332            Some(unsafe { &*(self.as_ptr().cast_array()) })
333        }
334    }
335
336    /// Returns a mutable array reference to the first `N` items in the slice.
337    ///
338    /// If the slice is not at least `N` in length, this will return `None`.
339    ///
340    /// # Examples
341    ///
342    /// ```
343    /// let x = &mut [0, 1, 2];
344    ///
345    /// if let Some(first) = x.first_chunk_mut::<2>() {
346    ///     first[0] = 5;
347    ///     first[1] = 4;
348    /// }
349    /// assert_eq!(x, &[5, 4, 2]);
350    ///
351    /// assert_eq!(None, x.first_chunk_mut::<4>());
352    /// ```
353    #[inline]
354    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
355    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
356    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
357        if self.len() < N {
358            None
359        } else {
360            // SAFETY: We explicitly check for the correct number of elements,
361            //   do not let the reference outlive the slice,
362            //   and require exclusive access to the entire slice to mutate the chunk.
363            Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
364        }
365    }
366
367    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
368    ///
369    /// If the slice is not at least `N` in length, this will return `None`.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// let x = &[0, 1, 2];
375    ///
376    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
377    ///     assert_eq!(first, &[0, 1]);
378    ///     assert_eq!(elements, &[2]);
379    /// }
380    ///
381    /// assert_eq!(None, x.split_first_chunk::<4>());
382    /// ```
383    #[inline]
384    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
385    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
387        let Some((first, tail)) = self.split_at_checked(N) else { return None };
388
389        // SAFETY: We explicitly check for the correct number of elements,
390        //   and do not let the references outlive the slice.
391        Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
392    }
393
394    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
395    /// slice.
396    ///
397    /// If the slice is not at least `N` in length, this will return `None`.
398    ///
399    /// # Examples
400    ///
401    /// ```
402    /// let x = &mut [0, 1, 2];
403    ///
404    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
405    ///     first[0] = 3;
406    ///     first[1] = 4;
407    ///     elements[0] = 5;
408    /// }
409    /// assert_eq!(x, &[3, 4, 5]);
410    ///
411    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
412    /// ```
413    #[inline]
414    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
415    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
416    pub const fn split_first_chunk_mut<const N: usize>(
417        &mut self,
418    ) -> Option<(&mut [T; N], &mut [T])> {
419        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
420
421        // SAFETY: We explicitly check for the correct number of elements,
422        //   do not let the reference outlive the slice,
423        //   and enforce exclusive mutability of the chunk by the split.
424        Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
425    }
426
427    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
428    ///
429    /// If the slice is not at least `N` in length, this will return `None`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let x = &[0, 1, 2];
435    ///
436    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
437    ///     assert_eq!(elements, &[0]);
438    ///     assert_eq!(last, &[1, 2]);
439    /// }
440    ///
441    /// assert_eq!(None, x.split_last_chunk::<4>());
442    /// ```
443    #[inline]
444    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
445    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
446    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
447        let Some(index) = self.len().checked_sub(N) else { return None };
448        let (init, last) = self.split_at(index);
449
450        // SAFETY: We explicitly check for the correct number of elements,
451        //   and do not let the references outlive the slice.
452        Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
453    }
454
455    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
456    /// slice.
457    ///
458    /// If the slice is not at least `N` in length, this will return `None`.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// let x = &mut [0, 1, 2];
464    ///
465    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
466    ///     last[0] = 3;
467    ///     last[1] = 4;
468    ///     elements[0] = 5;
469    /// }
470    /// assert_eq!(x, &[5, 3, 4]);
471    ///
472    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
473    /// ```
474    #[inline]
475    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
476    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
477    pub const fn split_last_chunk_mut<const N: usize>(
478        &mut self,
479    ) -> Option<(&mut [T], &mut [T; N])> {
480        let Some(index) = self.len().checked_sub(N) else { return None };
481        let (init, last) = self.split_at_mut(index);
482
483        // SAFETY: We explicitly check for the correct number of elements,
484        //   do not let the reference outlive the slice,
485        //   and enforce exclusive mutability of the chunk by the split.
486        Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
487    }
488
489    /// Returns an array reference to the last `N` items in the slice.
490    ///
491    /// If the slice is not at least `N` in length, this will return `None`.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let u = [10, 40, 30];
497    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
498    ///
499    /// let v: &[i32] = &[10];
500    /// assert_eq!(None, v.last_chunk::<2>());
501    ///
502    /// let w: &[i32] = &[];
503    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
504    /// ```
505    #[inline]
506    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
507    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
508    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
509        // FIXME(const-hack): Without const traits, we need this instead of `get`.
510        let Some(index) = self.len().checked_sub(N) else { return None };
511        let (_, last) = self.split_at(index);
512
513        // SAFETY: We explicitly check for the correct number of elements,
514        //   and do not let the references outlive the slice.
515        Some(unsafe { &*(last.as_ptr().cast_array()) })
516    }
517
518    /// Returns a mutable array reference to the last `N` items in the slice.
519    ///
520    /// If the slice is not at least `N` in length, this will return `None`.
521    ///
522    /// # Examples
523    ///
524    /// ```
525    /// let x = &mut [0, 1, 2];
526    ///
527    /// if let Some(last) = x.last_chunk_mut::<2>() {
528    ///     last[0] = 10;
529    ///     last[1] = 20;
530    /// }
531    /// assert_eq!(x, &[0, 10, 20]);
532    ///
533    /// assert_eq!(None, x.last_chunk_mut::<4>());
534    /// ```
535    #[inline]
536    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
537    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
538    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
539        // FIXME(const-hack): Without const traits, we need this instead of `get`.
540        let Some(index) = self.len().checked_sub(N) else { return None };
541        let (_, last) = self.split_at_mut(index);
542
543        // SAFETY: We explicitly check for the correct number of elements,
544        //   do not let the reference outlive the slice,
545        //   and require exclusive access to the entire slice to mutate the chunk.
546        Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
547    }
548
549    /// Returns a reference to an element or subslice depending on the type of
550    /// index.
551    ///
552    /// - If given a position, returns a reference to the element at that
553    ///   position or `None` if out of bounds.
554    /// - If given a range, returns the subslice corresponding to that range,
555    ///   or `None` if out of bounds.
556    ///
557    /// # Examples
558    ///
559    /// ```
560    /// let v = [10, 40, 30];
561    /// assert_eq!(Some(&40), v.get(1));
562    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
563    /// assert_eq!(None, v.get(3));
564    /// assert_eq!(None, v.get(0..4));
565    /// ```
566    #[stable(feature = "rust1", since = "1.0.0")]
567    #[rustc_no_implicit_autorefs]
568    #[inline]
569    #[must_use]
570    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
571    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
572    where
573        I: [const] SliceIndex<Self>,
574    {
575        index.get(self)
576    }
577
578    /// Returns a mutable reference to an element or subslice depending on the
579    /// type of index (see [`get`]) or `None` if the index is out of bounds.
580    ///
581    /// [`get`]: slice::get
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// let x = &mut [0, 1, 2];
587    ///
588    /// if let Some(elem) = x.get_mut(1) {
589    ///     *elem = 42;
590    /// }
591    /// assert_eq!(x, &[0, 42, 2]);
592    /// ```
593    #[stable(feature = "rust1", since = "1.0.0")]
594    #[rustc_no_implicit_autorefs]
595    #[inline]
596    #[must_use]
597    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
598    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
599    where
600        I: [const] SliceIndex<Self>,
601    {
602        index.get_mut(self)
603    }
604
605    /// Returns a reference to an element or subslice, without doing bounds
606    /// checking.
607    ///
608    /// For a safe alternative see [`get`].
609    ///
610    /// # Safety
611    ///
612    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
613    /// even if the resulting reference is not used.
614    ///
615    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
616    /// to call `.get_unchecked(len)`, even if you immediately convert to a
617    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
618    /// `.get_unchecked(..=len)`, or similar.
619    ///
620    /// [`get`]: slice::get
621    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// let x = &[1, 2, 4];
627    ///
628    /// unsafe {
629    ///     assert_eq!(x.get_unchecked(1), &2);
630    /// }
631    /// ```
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_no_implicit_autorefs]
634    #[inline]
635    #[must_use]
636    #[track_caller]
637    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
639    where
640        I: [const] SliceIndex<Self>,
641    {
642        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
643        // the slice is dereferenceable because `self` is a safe reference.
644        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
645        unsafe { &*index.get_unchecked(self) }
646    }
647
648    /// Returns a mutable reference to an element or subslice, without doing
649    /// bounds checking.
650    ///
651    /// For a safe alternative see [`get_mut`].
652    ///
653    /// # Safety
654    ///
655    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
656    /// even if the resulting reference is not used.
657    ///
658    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
659    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
660    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
661    /// `.get_unchecked_mut(..=len)`, or similar.
662    ///
663    /// [`get_mut`]: slice::get_mut
664    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
665    ///
666    /// # Examples
667    ///
668    /// ```
669    /// let x = &mut [1, 2, 4];
670    ///
671    /// unsafe {
672    ///     let elem = x.get_unchecked_mut(1);
673    ///     *elem = 13;
674    /// }
675    /// assert_eq!(x, &[1, 13, 4]);
676    /// ```
677    #[stable(feature = "rust1", since = "1.0.0")]
678    #[rustc_no_implicit_autorefs]
679    #[inline]
680    #[must_use]
681    #[track_caller]
682    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
683    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
684    where
685        I: [const] SliceIndex<Self>,
686    {
687        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
688        // the slice is dereferenceable because `self` is a safe reference.
689        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
690        unsafe { &mut *index.get_unchecked_mut(self) }
691    }
692
693    /// Returns a raw pointer to the slice's buffer.
694    ///
695    /// The caller must ensure that the slice outlives the pointer this
696    /// function returns, or else it will end up dangling.
697    ///
698    /// The caller must also ensure that the memory the pointer (non-transitively) points to
699    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
700    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
701    ///
702    /// Modifying the container referenced by this slice may cause its buffer
703    /// to be reallocated, which would also make any pointers to it invalid.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// let x = &[1, 2, 4];
709    /// let x_ptr = x.as_ptr();
710    ///
711    /// unsafe {
712    ///     for i in 0..x.len() {
713    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
714    ///     }
715    /// }
716    /// ```
717    ///
718    /// [`as_mut_ptr`]: slice::as_mut_ptr
719    #[stable(feature = "rust1", since = "1.0.0")]
720    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
721    #[rustc_never_returns_null_ptr]
722    #[rustc_as_ptr]
723    #[inline(always)]
724    #[must_use]
725    pub const fn as_ptr(&self) -> *const T {
726        self as *const [T] as *const T
727    }
728
729    /// Returns an unsafe mutable pointer to the slice's buffer.
730    ///
731    /// The caller must ensure that the slice outlives the pointer this
732    /// function returns, or else it will end up dangling.
733    ///
734    /// Modifying the container referenced by this slice may cause its buffer
735    /// to be reallocated, which would also make any pointers to it invalid.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// let x = &mut [1, 2, 4];
741    /// let x_ptr = x.as_mut_ptr();
742    ///
743    /// unsafe {
744    ///     for i in 0..x.len() {
745    ///         *x_ptr.add(i) += 2;
746    ///     }
747    /// }
748    /// assert_eq!(x, &[3, 4, 6]);
749    /// ```
750    #[stable(feature = "rust1", since = "1.0.0")]
751    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
752    #[rustc_never_returns_null_ptr]
753    #[rustc_as_ptr]
754    #[inline(always)]
755    #[must_use]
756    pub const fn as_mut_ptr(&mut self) -> *mut T {
757        self as *mut [T] as *mut T
758    }
759
760    /// Returns the two raw pointers spanning the slice.
761    ///
762    /// The returned range is half-open, which means that the end pointer
763    /// points *one past* the last element of the slice. This way, an empty
764    /// slice is represented by two equal pointers, and the difference between
765    /// the two pointers represents the size of the slice.
766    ///
767    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
768    /// requires extra caution, as it does not point to a valid element in the
769    /// slice.
770    ///
771    /// This function is useful for interacting with foreign interfaces which
772    /// use two pointers to refer to a range of elements in memory, as is
773    /// common in C++.
774    ///
775    /// It can also be useful to check if a pointer to an element refers to an
776    /// element of this slice:
777    ///
778    /// ```
779    /// let a = [1, 2, 3];
780    /// let x = &a[1] as *const _;
781    /// let y = &5 as *const _;
782    ///
783    /// assert!(a.as_ptr_range().contains(&x));
784    /// assert!(!a.as_ptr_range().contains(&y));
785    /// ```
786    ///
787    /// [`as_ptr`]: slice::as_ptr
788    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
789    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
790    #[inline]
791    #[must_use]
792    pub const fn as_ptr_range(&self) -> Range<*const T> {
793        let start = self.as_ptr();
794        // SAFETY: The `add` here is safe, because:
795        //
796        //   - Both pointers are part of the same object, as pointing directly
797        //     past the object also counts.
798        //
799        //   - The size of the slice is never larger than `isize::MAX` bytes, as
800        //     noted here:
801        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
802        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
803        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
804        //     (This doesn't seem normative yet, but the very same assumption is
805        //     made in many places, including the Index implementation of slices.)
806        //
807        //   - There is no wrapping around involved, as slices do not wrap past
808        //     the end of the address space.
809        //
810        // See the documentation of [`pointer::add`].
811        let end = unsafe { start.add(self.len()) };
812        start..end
813    }
814
815    /// Returns the two unsafe mutable pointers spanning the slice.
816    ///
817    /// The returned range is half-open, which means that the end pointer
818    /// points *one past* the last element of the slice. This way, an empty
819    /// slice is represented by two equal pointers, and the difference between
820    /// the two pointers represents the size of the slice.
821    ///
822    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
823    /// pointer requires extra caution, as it does not point to a valid element
824    /// in the slice.
825    ///
826    /// This function is useful for interacting with foreign interfaces which
827    /// use two pointers to refer to a range of elements in memory, as is
828    /// common in C++.
829    ///
830    /// [`as_mut_ptr`]: slice::as_mut_ptr
831    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
832    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
833    #[inline]
834    #[must_use]
835    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
836        let start = self.as_mut_ptr();
837        // SAFETY: See as_ptr_range() above for why `add` here is safe.
838        let end = unsafe { start.add(self.len()) };
839        start..end
840    }
841
842    /// Gets a reference to the underlying array.
843    ///
844    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
845    #[stable(feature = "core_slice_as_array", since = "1.93.0")]
846    #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
847    #[inline]
848    #[must_use]
849    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
850        if self.len() == N {
851            let ptr = self.as_ptr().cast_array();
852
853            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
854            let me = unsafe { &*ptr };
855            Some(me)
856        } else {
857            None
858        }
859    }
860
861    /// Gets a mutable reference to the slice's underlying array.
862    ///
863    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
864    #[stable(feature = "core_slice_as_array", since = "1.93.0")]
865    #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
866    #[inline]
867    #[must_use]
868    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
869        if self.len() == N {
870            let ptr = self.as_mut_ptr().cast_array();
871
872            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
873            let me = unsafe { &mut *ptr };
874            Some(me)
875        } else {
876            None
877        }
878    }
879
880    /// Swaps two elements in the slice.
881    ///
882    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
883    ///
884    /// # Arguments
885    ///
886    /// * a - The index of the first element
887    /// * b - The index of the second element
888    ///
889    /// # Panics
890    ///
891    /// Panics if `a` or `b` are out of bounds.
892    ///
893    /// # Examples
894    ///
895    /// ```
896    /// let mut v = ["a", "b", "c", "d", "e"];
897    /// v.swap(2, 4);
898    /// assert!(v == ["a", "b", "e", "d", "c"]);
899    /// ```
900    #[stable(feature = "rust1", since = "1.0.0")]
901    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
902    #[inline]
903    #[track_caller]
904    pub const fn swap(&mut self, a: usize, b: usize) {
905        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
906        // Can't take two mutable loans from one vector, so instead use raw pointers.
907        let pa = &raw mut self[a];
908        let pb = &raw mut self[b];
909        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
910        // to elements in the slice and therefore are guaranteed to be valid and aligned.
911        // Note that accessing the elements behind `a` and `b` is checked and will
912        // panic when out of bounds.
913        unsafe {
914            ptr::swap(pa, pb);
915        }
916    }
917
918    /// Swaps two elements in the slice, without doing bounds checking.
919    ///
920    /// For a safe alternative see [`swap`].
921    ///
922    /// # Arguments
923    ///
924    /// * a - The index of the first element
925    /// * b - The index of the second element
926    ///
927    /// # Safety
928    ///
929    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
930    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(slice_swap_unchecked)]
936    ///
937    /// let mut v = ["a", "b", "c", "d"];
938    /// // SAFETY: we know that 1 and 3 are both indices of the slice
939    /// unsafe { v.swap_unchecked(1, 3) };
940    /// assert!(v == ["a", "d", "c", "b"]);
941    /// ```
942    ///
943    /// [`swap`]: slice::swap
944    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
945    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
946    #[track_caller]
947    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
948        assert_unsafe_precondition!(
949            check_library_ub,
950            "slice::swap_unchecked requires that the indices are within the slice",
951            (
952                len: usize = self.len(),
953                a: usize = a,
954                b: usize = b,
955            ) => a < len && b < len,
956        );
957
958        let ptr = self.as_mut_ptr();
959        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
960        unsafe {
961            ptr::swap(ptr.add(a), ptr.add(b));
962        }
963    }
964
965    /// Reverses the order of elements in the slice, in place.
966    ///
967    /// # Examples
968    ///
969    /// ```
970    /// let mut v = [1, 2, 3];
971    /// v.reverse();
972    /// assert!(v == [3, 2, 1]);
973    /// ```
974    #[stable(feature = "rust1", since = "1.0.0")]
975    #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
976    #[inline]
977    pub const fn reverse(&mut self) {
978        let half_len = self.len() / 2;
979        let Range { start, end } = self.as_mut_ptr_range();
980
981        // These slices will skip the middle item for an odd length,
982        // since that one doesn't need to move.
983        let (front_half, back_half) =
984            // SAFETY: Both are subparts of the original slice, so the memory
985            // range is valid, and they don't overlap because they're each only
986            // half (or less) of the original slice.
987            unsafe {
988                (
989                    slice::from_raw_parts_mut(start, half_len),
990                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
991                )
992            };
993
994        // Introducing a function boundary here means that the two halves
995        // get `noalias` markers, allowing better optimization as LLVM
996        // knows that they're disjoint, unlike in the original slice.
997        revswap(front_half, back_half, half_len);
998
999        #[inline]
1000        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1001            debug_assert!(a.len() == n);
1002            debug_assert!(b.len() == n);
1003
1004            // Because this function is first compiled in isolation,
1005            // this check tells LLVM that the indexing below is
1006            // in-bounds. Then after inlining -- once the actual
1007            // lengths of the slices are known -- it's removed.
1008            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1009            let (a, _) = a.split_at_mut(n);
1010            let (b, _) = b.split_at_mut(n);
1011
1012            let mut i = 0;
1013            while i < n {
1014                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1015                i += 1;
1016            }
1017        }
1018    }
1019
1020    /// Returns an iterator over the slice.
1021    ///
1022    /// The iterator yields all items from start to end.
1023    ///
1024    /// # Examples
1025    ///
1026    /// ```
1027    /// let x = &[1, 2, 4];
1028    /// let mut iterator = x.iter();
1029    ///
1030    /// assert_eq!(iterator.next(), Some(&1));
1031    /// assert_eq!(iterator.next(), Some(&2));
1032    /// assert_eq!(iterator.next(), Some(&4));
1033    /// assert_eq!(iterator.next(), None);
1034    /// ```
1035    #[stable(feature = "rust1", since = "1.0.0")]
1036    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1037    #[inline]
1038    #[rustc_diagnostic_item = "slice_iter"]
1039    pub const fn iter(&self) -> Iter<'_, T> {
1040        Iter::new(self)
1041    }
1042
1043    /// Returns an iterator that allows modifying each value.
1044    ///
1045    /// The iterator yields all items from start to end.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// let x = &mut [1, 2, 4];
1051    /// for elem in x.iter_mut() {
1052    ///     *elem += 2;
1053    /// }
1054    /// assert_eq!(x, &[3, 4, 6]);
1055    /// ```
1056    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1057    #[stable(feature = "rust1", since = "1.0.0")]
1058    #[inline]
1059    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1060        IterMut::new(self)
1061    }
1062
1063    /// Returns an iterator over all contiguous windows of length
1064    /// `size`. The windows overlap. If the slice is shorter than
1065    /// `size`, the iterator returns no values.
1066    ///
1067    /// # Panics
1068    ///
1069    /// Panics if `size` is zero.
1070    ///
1071    /// # Examples
1072    ///
1073    /// ```
1074    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1075    /// let mut iter = slice.windows(3);
1076    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1077    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1078    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1079    /// assert!(iter.next().is_none());
1080    /// ```
1081    ///
1082    /// If the slice is shorter than `size`:
1083    ///
1084    /// ```
1085    /// let slice = ['f', 'o', 'o'];
1086    /// let mut iter = slice.windows(4);
1087    /// assert!(iter.next().is_none());
1088    /// ```
1089    ///
1090    /// Because the [Iterator] trait cannot represent the required lifetimes,
1091    /// there is no `windows_mut` analog to `windows`;
1092    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1093    /// (though a [LendingIterator] analog is possible). You can sometimes use
1094    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1095    /// conjunction with `windows` instead:
1096    ///
1097    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1098    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1099    /// ```
1100    /// use std::cell::Cell;
1101    ///
1102    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1103    /// let slice = &mut array[..];
1104    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1105    /// for w in slice_of_cells.windows(3) {
1106    ///     Cell::swap(&w[0], &w[2]);
1107    /// }
1108    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1109    /// ```
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1112    #[inline]
1113    #[track_caller]
1114    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1115        let size = NonZero::new(size).expect("window size must be non-zero");
1116        Windows::new(self, size)
1117    }
1118
1119    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1120    /// beginning of the slice.
1121    ///
1122    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1123    /// slice, then the last chunk will not have length `chunk_size`.
1124    ///
1125    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1126    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1127    /// slice.
1128    ///
1129    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1130    /// give references to arrays of exactly that length, rather than slices.
1131    ///
1132    /// # Panics
1133    ///
1134    /// Panics if `chunk_size` is zero.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1140    /// let mut iter = slice.chunks(2);
1141    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1142    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1143    /// assert_eq!(iter.next().unwrap(), &['m']);
1144    /// assert!(iter.next().is_none());
1145    /// ```
1146    ///
1147    /// [`chunks_exact`]: slice::chunks_exact
1148    /// [`rchunks`]: slice::rchunks
1149    /// [`as_chunks`]: slice::as_chunks
1150    #[stable(feature = "rust1", since = "1.0.0")]
1151    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1152    #[inline]
1153    #[track_caller]
1154    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1155        assert!(chunk_size != 0, "chunk size must be non-zero");
1156        Chunks::new(self, chunk_size)
1157    }
1158
1159    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1160    /// beginning of the slice.
1161    ///
1162    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1163    /// length of the slice, then the last chunk will not have length `chunk_size`.
1164    ///
1165    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1166    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1167    /// the end of the slice.
1168    ///
1169    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1170    /// give references to arrays of exactly that length, rather than slices.
1171    ///
1172    /// # Panics
1173    ///
1174    /// Panics if `chunk_size` is zero.
1175    ///
1176    /// # Examples
1177    ///
1178    /// ```
1179    /// let v = &mut [0, 0, 0, 0, 0];
1180    /// let mut count = 1;
1181    ///
1182    /// for chunk in v.chunks_mut(2) {
1183    ///     for elem in chunk.iter_mut() {
1184    ///         *elem += count;
1185    ///     }
1186    ///     count += 1;
1187    /// }
1188    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1189    /// ```
1190    ///
1191    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1192    /// [`rchunks_mut`]: slice::rchunks_mut
1193    /// [`as_chunks_mut`]: slice::as_chunks_mut
1194    #[stable(feature = "rust1", since = "1.0.0")]
1195    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1196    #[inline]
1197    #[track_caller]
1198    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1199        assert!(chunk_size != 0, "chunk size must be non-zero");
1200        ChunksMut::new(self, chunk_size)
1201    }
1202
1203    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1204    /// beginning of the slice.
1205    ///
1206    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1207    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1208    /// from the `remainder` function of the iterator.
1209    ///
1210    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1211    /// resulting code better than in the case of [`chunks`].
1212    ///
1213    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1214    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1215    ///
1216    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1217    /// give references to arrays of exactly that length, rather than slices.
1218    ///
1219    /// # Panics
1220    ///
1221    /// Panics if `chunk_size` is zero.
1222    ///
1223    /// # Examples
1224    ///
1225    /// ```
1226    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1227    /// let mut iter = slice.chunks_exact(2);
1228    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1229    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1230    /// assert!(iter.next().is_none());
1231    /// assert_eq!(iter.remainder(), &['m']);
1232    /// ```
1233    ///
1234    /// [`chunks`]: slice::chunks
1235    /// [`rchunks_exact`]: slice::rchunks_exact
1236    /// [`as_chunks`]: slice::as_chunks
1237    #[stable(feature = "chunks_exact", since = "1.31.0")]
1238    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1239    #[inline]
1240    #[track_caller]
1241    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1242        assert!(chunk_size != 0, "chunk size must be non-zero");
1243        ChunksExact::new(self, chunk_size)
1244    }
1245
1246    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1247    /// beginning of the slice.
1248    ///
1249    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1250    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1251    /// retrieved from the `into_remainder` function of the iterator.
1252    ///
1253    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1254    /// resulting code better than in the case of [`chunks_mut`].
1255    ///
1256    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1257    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1258    /// the slice.
1259    ///
1260    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1261    /// give references to arrays of exactly that length, rather than slices.
1262    ///
1263    /// # Panics
1264    ///
1265    /// Panics if `chunk_size` is zero.
1266    ///
1267    /// # Examples
1268    ///
1269    /// ```
1270    /// let v = &mut [0, 0, 0, 0, 0];
1271    /// let mut count = 1;
1272    ///
1273    /// for chunk in v.chunks_exact_mut(2) {
1274    ///     for elem in chunk.iter_mut() {
1275    ///         *elem += count;
1276    ///     }
1277    ///     count += 1;
1278    /// }
1279    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1280    /// ```
1281    ///
1282    /// [`chunks_mut`]: slice::chunks_mut
1283    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1284    /// [`as_chunks_mut`]: slice::as_chunks_mut
1285    #[stable(feature = "chunks_exact", since = "1.31.0")]
1286    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1287    #[inline]
1288    #[track_caller]
1289    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1290        assert!(chunk_size != 0, "chunk size must be non-zero");
1291        ChunksExactMut::new(self, chunk_size)
1292    }
1293
1294    /// Splits the slice into a slice of `N`-element arrays,
1295    /// assuming that there's no remainder.
1296    ///
1297    /// This is the inverse operation to [`as_flattened`].
1298    ///
1299    /// [`as_flattened`]: slice::as_flattened
1300    ///
1301    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1302    /// [`as_rchunks`] instead, perhaps via something like
1303    /// `if let (chunks, []) = slice.as_chunks()` or
1304    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1305    ///
1306    /// [`as_chunks`]: slice::as_chunks
1307    /// [`as_rchunks`]: slice::as_rchunks
1308    ///
1309    /// # Safety
1310    ///
1311    /// This may only be called when
1312    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1313    /// - `N != 0`.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1319    /// let chunks: &[[char; 1]] =
1320    ///     // SAFETY: 1-element chunks never have remainder
1321    ///     unsafe { slice.as_chunks_unchecked() };
1322    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1323    /// let chunks: &[[char; 3]] =
1324    ///     // SAFETY: The slice length (6) is a multiple of 3
1325    ///     unsafe { slice.as_chunks_unchecked() };
1326    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1327    ///
1328    /// // These would be unsound:
1329    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1330    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1331    /// ```
1332    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1333    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1334    #[inline]
1335    #[must_use]
1336    #[track_caller]
1337    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1338        assert_unsafe_precondition!(
1339            check_language_ub,
1340            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1341            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1342        );
1343        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1344        let new_len = unsafe { exact_div(self.len(), N) };
1345        // SAFETY: We cast a slice of `new_len * N` elements into
1346        // a slice of `new_len` many `N` elements chunks.
1347        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1348    }
1349
1350    /// Splits the slice into a slice of `N`-element arrays,
1351    /// starting at the beginning of the slice,
1352    /// and a remainder slice with length strictly less than `N`.
1353    ///
1354    /// The remainder is meaningful in the division sense.  Given
1355    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1356    /// - `chunks.len()` equals `slice.len() / N`,
1357    /// - `remainder.len()` equals `slice.len() % N`, and
1358    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1359    ///
1360    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1361    ///
1362    /// [`as_flattened`]: slice::as_flattened
1363    ///
1364    /// # Panics
1365    ///
1366    /// Panics if `N` is zero.
1367    ///
1368    /// Note that this check is against a const generic parameter, not a runtime
1369    /// value, and thus a particular monomorphization will either always panic
1370    /// or it will never panic.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1376    /// let (chunks, remainder) = slice.as_chunks();
1377    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1378    /// assert_eq!(remainder, &['m']);
1379    /// ```
1380    ///
1381    /// If you expect the slice to be an exact multiple, you can combine
1382    /// `let`-`else` with an empty slice pattern:
1383    /// ```
1384    /// let slice = ['R', 'u', 's', 't'];
1385    /// let (chunks, []) = slice.as_chunks::<2>() else {
1386    ///     panic!("slice didn't have even length")
1387    /// };
1388    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1389    /// ```
1390    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1391    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1392    #[inline]
1393    #[track_caller]
1394    #[must_use]
1395    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1396        assert!(N != 0, "chunk size must be non-zero");
1397        let len_rounded_down = self.len() / N * N;
1398        // SAFETY: The rounded-down value is always the same or smaller than the
1399        // original length, and thus must be in-bounds of the slice.
1400        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1401        // SAFETY: We already panicked for zero, and ensured by construction
1402        // that the length of the subslice is a multiple of N.
1403        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1404        (array_slice, remainder)
1405    }
1406
1407    /// Splits the slice into a slice of `N`-element arrays,
1408    /// starting at the end of the slice,
1409    /// and a remainder slice with length strictly less than `N`.
1410    ///
1411    /// The remainder is meaningful in the division sense.  Given
1412    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1413    /// - `remainder.len()` equals `slice.len() % N`,
1414    /// - `chunks.len()` equals `slice.len() / N`, and
1415    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1416    ///
1417    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1418    ///
1419    /// [`as_flattened`]: slice::as_flattened
1420    ///
1421    /// # Panics
1422    ///
1423    /// Panics if `N` is zero.
1424    ///
1425    /// Note that this check is against a const generic parameter, not a runtime
1426    /// value, and thus a particular monomorphization will either always panic
1427    /// or it will never panic.
1428    ///
1429    /// # Examples
1430    ///
1431    /// ```
1432    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1433    /// let (remainder, chunks) = slice.as_rchunks();
1434    /// assert_eq!(remainder, &['l']);
1435    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1436    /// ```
1437    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1438    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1439    #[inline]
1440    #[track_caller]
1441    #[must_use]
1442    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1443        assert!(N != 0, "chunk size must be non-zero");
1444        let len = self.len() / N;
1445        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1446        // SAFETY: We already panicked for zero, and ensured by construction
1447        // that the length of the subslice is a multiple of N.
1448        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1449        (remainder, array_slice)
1450    }
1451
1452    /// Splits the slice into a slice of `N`-element arrays,
1453    /// assuming that there's no remainder.
1454    ///
1455    /// This is the inverse operation to [`as_flattened_mut`].
1456    ///
1457    /// [`as_flattened_mut`]: slice::as_flattened_mut
1458    ///
1459    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1460    /// [`as_rchunks_mut`] instead, perhaps via something like
1461    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1462    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1463    ///
1464    /// [`as_chunks_mut`]: slice::as_chunks_mut
1465    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1466    ///
1467    /// # Safety
1468    ///
1469    /// This may only be called when
1470    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1471    /// - `N != 0`.
1472    ///
1473    /// # Examples
1474    ///
1475    /// ```
1476    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1477    /// let chunks: &mut [[char; 1]] =
1478    ///     // SAFETY: 1-element chunks never have remainder
1479    ///     unsafe { slice.as_chunks_unchecked_mut() };
1480    /// chunks[0] = ['L'];
1481    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1482    /// let chunks: &mut [[char; 3]] =
1483    ///     // SAFETY: The slice length (6) is a multiple of 3
1484    ///     unsafe { slice.as_chunks_unchecked_mut() };
1485    /// chunks[1] = ['a', 'x', '?'];
1486    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1487    ///
1488    /// // These would be unsound:
1489    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1490    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1491    /// ```
1492    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1493    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1494    #[inline]
1495    #[must_use]
1496    #[track_caller]
1497    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1498        assert_unsafe_precondition!(
1499            check_language_ub,
1500            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1501            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1502        );
1503        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1504        let new_len = unsafe { exact_div(self.len(), N) };
1505        // SAFETY: We cast a slice of `new_len * N` elements into
1506        // a slice of `new_len` many `N` elements chunks.
1507        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1508    }
1509
1510    /// Splits the slice into a slice of `N`-element arrays,
1511    /// starting at the beginning of the slice,
1512    /// and a remainder slice with length strictly less than `N`.
1513    ///
1514    /// The remainder is meaningful in the division sense.  Given
1515    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1516    /// - `chunks.len()` equals `slice.len() / N`,
1517    /// - `remainder.len()` equals `slice.len() % N`, and
1518    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1519    ///
1520    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1521    ///
1522    /// [`as_flattened_mut`]: slice::as_flattened_mut
1523    ///
1524    /// # Panics
1525    ///
1526    /// Panics if `N` is zero.
1527    ///
1528    /// Note that this check is against a const generic parameter, not a runtime
1529    /// value, and thus a particular monomorphization will either always panic
1530    /// or it will never panic.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// let v = &mut [0, 0, 0, 0, 0];
1536    /// let mut count = 1;
1537    ///
1538    /// let (chunks, remainder) = v.as_chunks_mut();
1539    /// remainder[0] = 9;
1540    /// for chunk in chunks {
1541    ///     *chunk = [count; 2];
1542    ///     count += 1;
1543    /// }
1544    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1545    /// ```
1546    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1547    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1548    #[inline]
1549    #[track_caller]
1550    #[must_use]
1551    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1552        assert!(N != 0, "chunk size must be non-zero");
1553        let len_rounded_down = self.len() / N * N;
1554        // SAFETY: The rounded-down value is always the same or smaller than the
1555        // original length, and thus must be in-bounds of the slice.
1556        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1557        // SAFETY: We already panicked for zero, and ensured by construction
1558        // that the length of the subslice is a multiple of N.
1559        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1560        (array_slice, remainder)
1561    }
1562
1563    /// Splits the slice into a slice of `N`-element arrays,
1564    /// starting at the end of the slice,
1565    /// and a remainder slice with length strictly less than `N`.
1566    ///
1567    /// The remainder is meaningful in the division sense.  Given
1568    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1569    /// - `remainder.len()` equals `slice.len() % N`,
1570    /// - `chunks.len()` equals `slice.len() / N`, and
1571    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1572    ///
1573    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1574    ///
1575    /// [`as_flattened_mut`]: slice::as_flattened_mut
1576    ///
1577    /// # Panics
1578    ///
1579    /// Panics if `N` is zero.
1580    ///
1581    /// Note that this check is against a const generic parameter, not a runtime
1582    /// value, and thus a particular monomorphization will either always panic
1583    /// or it will never panic.
1584    ///
1585    /// # Examples
1586    ///
1587    /// ```
1588    /// let v = &mut [0, 0, 0, 0, 0];
1589    /// let mut count = 1;
1590    ///
1591    /// let (remainder, chunks) = v.as_rchunks_mut();
1592    /// remainder[0] = 9;
1593    /// for chunk in chunks {
1594    ///     *chunk = [count; 2];
1595    ///     count += 1;
1596    /// }
1597    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1598    /// ```
1599    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1600    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1601    #[inline]
1602    #[track_caller]
1603    #[must_use]
1604    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1605        assert!(N != 0, "chunk size must be non-zero");
1606        let len = self.len() / N;
1607        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1608        // SAFETY: We already panicked for zero, and ensured by construction
1609        // that the length of the subslice is a multiple of N.
1610        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1611        (remainder, array_slice)
1612    }
1613
1614    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1615    /// starting at the beginning of the slice.
1616    ///
1617    /// This is the const generic equivalent of [`windows`].
1618    ///
1619    /// If `N` is greater than the size of the slice, it will return no windows.
1620    ///
1621    /// # Panics
1622    ///
1623    /// Panics if `N` is zero.
1624    ///
1625    /// Note that this check is against a const generic parameter, not a runtime
1626    /// value, and thus a particular monomorphization will either always panic
1627    /// or it will never panic.
1628    ///
1629    /// # Examples
1630    ///
1631    /// ```
1632    /// let slice = [0, 1, 2, 3];
1633    /// let mut iter = slice.array_windows();
1634    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1635    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1636    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1637    /// assert!(iter.next().is_none());
1638    /// ```
1639    ///
1640    /// [`windows`]: slice::windows
1641    #[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
1642    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1643    #[inline]
1644    #[track_caller]
1645    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1646        assert!(N != 0, "window size must be non-zero");
1647        ArrayWindows::new(self)
1648    }
1649
1650    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1651    /// of the slice.
1652    ///
1653    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1654    /// slice, then the last chunk will not have length `chunk_size`.
1655    ///
1656    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1657    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1658    /// of the slice.
1659    ///
1660    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1661    /// give references to arrays of exactly that length, rather than slices.
1662    ///
1663    /// # Panics
1664    ///
1665    /// Panics if `chunk_size` is zero.
1666    ///
1667    /// # Examples
1668    ///
1669    /// ```
1670    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1671    /// let mut iter = slice.rchunks(2);
1672    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1673    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1674    /// assert_eq!(iter.next().unwrap(), &['l']);
1675    /// assert!(iter.next().is_none());
1676    /// ```
1677    ///
1678    /// [`rchunks_exact`]: slice::rchunks_exact
1679    /// [`chunks`]: slice::chunks
1680    /// [`as_rchunks`]: slice::as_rchunks
1681    #[stable(feature = "rchunks", since = "1.31.0")]
1682    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1683    #[inline]
1684    #[track_caller]
1685    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1686        assert!(chunk_size != 0, "chunk size must be non-zero");
1687        RChunks::new(self, chunk_size)
1688    }
1689
1690    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1691    /// of the slice.
1692    ///
1693    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1694    /// length of the slice, then the last chunk will not have length `chunk_size`.
1695    ///
1696    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1697    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1698    /// beginning of the slice.
1699    ///
1700    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1701    /// give references to arrays of exactly that length, rather than slices.
1702    ///
1703    /// # Panics
1704    ///
1705    /// Panics if `chunk_size` is zero.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// let v = &mut [0, 0, 0, 0, 0];
1711    /// let mut count = 1;
1712    ///
1713    /// for chunk in v.rchunks_mut(2) {
1714    ///     for elem in chunk.iter_mut() {
1715    ///         *elem += count;
1716    ///     }
1717    ///     count += 1;
1718    /// }
1719    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1720    /// ```
1721    ///
1722    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1723    /// [`chunks_mut`]: slice::chunks_mut
1724    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1725    #[stable(feature = "rchunks", since = "1.31.0")]
1726    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1727    #[inline]
1728    #[track_caller]
1729    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1730        assert!(chunk_size != 0, "chunk size must be non-zero");
1731        RChunksMut::new(self, chunk_size)
1732    }
1733
1734    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1735    /// end of the slice.
1736    ///
1737    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1738    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1739    /// from the `remainder` function of the iterator.
1740    ///
1741    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1742    /// resulting code better than in the case of [`rchunks`].
1743    ///
1744    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1745    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1746    /// slice.
1747    ///
1748    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1749    /// give references to arrays of exactly that length, rather than slices.
1750    ///
1751    /// # Panics
1752    ///
1753    /// Panics if `chunk_size` is zero.
1754    ///
1755    /// # Examples
1756    ///
1757    /// ```
1758    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1759    /// let mut iter = slice.rchunks_exact(2);
1760    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1761    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1762    /// assert!(iter.next().is_none());
1763    /// assert_eq!(iter.remainder(), &['l']);
1764    /// ```
1765    ///
1766    /// [`chunks`]: slice::chunks
1767    /// [`rchunks`]: slice::rchunks
1768    /// [`chunks_exact`]: slice::chunks_exact
1769    /// [`as_rchunks`]: slice::as_rchunks
1770    #[stable(feature = "rchunks", since = "1.31.0")]
1771    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1772    #[inline]
1773    #[track_caller]
1774    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1775        assert!(chunk_size != 0, "chunk size must be non-zero");
1776        RChunksExact::new(self, chunk_size)
1777    }
1778
1779    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1780    /// of the slice.
1781    ///
1782    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1783    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1784    /// retrieved from the `into_remainder` function of the iterator.
1785    ///
1786    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1787    /// resulting code better than in the case of [`chunks_mut`].
1788    ///
1789    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1790    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1791    /// of the slice.
1792    ///
1793    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1794    /// give references to arrays of exactly that length, rather than slices.
1795    ///
1796    /// # Panics
1797    ///
1798    /// Panics if `chunk_size` is zero.
1799    ///
1800    /// # Examples
1801    ///
1802    /// ```
1803    /// let v = &mut [0, 0, 0, 0, 0];
1804    /// let mut count = 1;
1805    ///
1806    /// for chunk in v.rchunks_exact_mut(2) {
1807    ///     for elem in chunk.iter_mut() {
1808    ///         *elem += count;
1809    ///     }
1810    ///     count += 1;
1811    /// }
1812    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1813    /// ```
1814    ///
1815    /// [`chunks_mut`]: slice::chunks_mut
1816    /// [`rchunks_mut`]: slice::rchunks_mut
1817    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1818    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1819    #[stable(feature = "rchunks", since = "1.31.0")]
1820    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1821    #[inline]
1822    #[track_caller]
1823    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1824        assert!(chunk_size != 0, "chunk size must be non-zero");
1825        RChunksExactMut::new(self, chunk_size)
1826    }
1827
1828    /// Returns an iterator over the slice producing non-overlapping runs
1829    /// of elements using the predicate to separate them.
1830    ///
1831    /// The predicate is called for every pair of consecutive elements,
1832    /// meaning that it is called on `slice[0]` and `slice[1]`,
1833    /// followed by `slice[1]` and `slice[2]`, and so on.
1834    ///
1835    /// # Examples
1836    ///
1837    /// ```
1838    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1839    ///
1840    /// let mut iter = slice.chunk_by(|a, b| a == b);
1841    ///
1842    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1843    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1844    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1845    /// assert_eq!(iter.next(), None);
1846    /// ```
1847    ///
1848    /// This method can be used to extract the sorted subslices:
1849    ///
1850    /// ```
1851    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1852    ///
1853    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1854    ///
1855    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1856    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1857    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1858    /// assert_eq!(iter.next(), None);
1859    /// ```
1860    #[stable(feature = "slice_group_by", since = "1.77.0")]
1861    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1862    #[inline]
1863    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1864    where
1865        F: FnMut(&T, &T) -> bool,
1866    {
1867        ChunkBy::new(self, pred)
1868    }
1869
1870    /// Returns an iterator over the slice producing non-overlapping mutable
1871    /// runs of elements using the predicate to separate them.
1872    ///
1873    /// The predicate is called for every pair of consecutive elements,
1874    /// meaning that it is called on `slice[0]` and `slice[1]`,
1875    /// followed by `slice[1]` and `slice[2]`, and so on.
1876    ///
1877    /// # Examples
1878    ///
1879    /// ```
1880    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1881    ///
1882    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1883    ///
1884    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1885    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1886    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1887    /// assert_eq!(iter.next(), None);
1888    /// ```
1889    ///
1890    /// This method can be used to extract the sorted subslices:
1891    ///
1892    /// ```
1893    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1894    ///
1895    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1896    ///
1897    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1898    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1899    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1900    /// assert_eq!(iter.next(), None);
1901    /// ```
1902    #[stable(feature = "slice_group_by", since = "1.77.0")]
1903    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1904    #[inline]
1905    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1906    where
1907        F: FnMut(&T, &T) -> bool,
1908    {
1909        ChunkByMut::new(self, pred)
1910    }
1911
1912    /// Divides one slice into two at an index.
1913    ///
1914    /// The first will contain all indices from `[0, mid)` (excluding
1915    /// the index `mid` itself) and the second will contain all
1916    /// indices from `[mid, len)` (excluding the index `len` itself).
1917    ///
1918    /// # Panics
1919    ///
1920    /// Panics if `mid > len`.  For a non-panicking alternative see
1921    /// [`split_at_checked`](slice::split_at_checked).
1922    ///
1923    /// # Examples
1924    ///
1925    /// ```
1926    /// let v = ['a', 'b', 'c'];
1927    ///
1928    /// {
1929    ///    let (left, right) = v.split_at(0);
1930    ///    assert_eq!(left, []);
1931    ///    assert_eq!(right, ['a', 'b', 'c']);
1932    /// }
1933    ///
1934    /// {
1935    ///     let (left, right) = v.split_at(2);
1936    ///     assert_eq!(left, ['a', 'b']);
1937    ///     assert_eq!(right, ['c']);
1938    /// }
1939    ///
1940    /// {
1941    ///     let (left, right) = v.split_at(3);
1942    ///     assert_eq!(left, ['a', 'b', 'c']);
1943    ///     assert_eq!(right, []);
1944    /// }
1945    /// ```
1946    #[stable(feature = "rust1", since = "1.0.0")]
1947    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1948    #[inline]
1949    #[track_caller]
1950    #[must_use]
1951    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1952        match self.split_at_checked(mid) {
1953            Some(pair) => pair,
1954            None => panic!("mid > len"),
1955        }
1956    }
1957
1958    /// Divides one mutable slice into two at an index.
1959    ///
1960    /// The first will contain all indices from `[0, mid)` (excluding
1961    /// the index `mid` itself) and the second will contain all
1962    /// indices from `[mid, len)` (excluding the index `len` itself).
1963    ///
1964    /// # Panics
1965    ///
1966    /// Panics if `mid > len`.  For a non-panicking alternative see
1967    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1968    ///
1969    /// # Examples
1970    ///
1971    /// ```
1972    /// let mut v = [1, 0, 3, 0, 5, 6];
1973    /// let (left, right) = v.split_at_mut(2);
1974    /// assert_eq!(left, [1, 0]);
1975    /// assert_eq!(right, [3, 0, 5, 6]);
1976    /// left[1] = 2;
1977    /// right[1] = 4;
1978    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1979    /// ```
1980    #[stable(feature = "rust1", since = "1.0.0")]
1981    #[inline]
1982    #[track_caller]
1983    #[must_use]
1984    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
1985    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1986        match self.split_at_mut_checked(mid) {
1987            Some(pair) => pair,
1988            None => panic!("mid > len"),
1989        }
1990    }
1991
1992    /// Divides one slice into two at an index, without doing bounds checking.
1993    ///
1994    /// The first will contain all indices from `[0, mid)` (excluding
1995    /// the index `mid` itself) and the second will contain all
1996    /// indices from `[mid, len)` (excluding the index `len` itself).
1997    ///
1998    /// For a safe alternative see [`split_at`].
1999    ///
2000    /// # Safety
2001    ///
2002    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2003    /// even if the resulting reference is not used. The caller has to ensure that
2004    /// `0 <= mid <= self.len()`.
2005    ///
2006    /// [`split_at`]: slice::split_at
2007    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2008    ///
2009    /// # Examples
2010    ///
2011    /// ```
2012    /// let v = ['a', 'b', 'c'];
2013    ///
2014    /// unsafe {
2015    ///    let (left, right) = v.split_at_unchecked(0);
2016    ///    assert_eq!(left, []);
2017    ///    assert_eq!(right, ['a', 'b', 'c']);
2018    /// }
2019    ///
2020    /// unsafe {
2021    ///     let (left, right) = v.split_at_unchecked(2);
2022    ///     assert_eq!(left, ['a', 'b']);
2023    ///     assert_eq!(right, ['c']);
2024    /// }
2025    ///
2026    /// unsafe {
2027    ///     let (left, right) = v.split_at_unchecked(3);
2028    ///     assert_eq!(left, ['a', 'b', 'c']);
2029    ///     assert_eq!(right, []);
2030    /// }
2031    /// ```
2032    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2033    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2034    #[inline]
2035    #[must_use]
2036    #[track_caller]
2037    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2038        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2039        // function const; previously the implementation used
2040        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2041
2042        let len = self.len();
2043        let ptr = self.as_ptr();
2044
2045        assert_unsafe_precondition!(
2046            check_library_ub,
2047            "slice::split_at_unchecked requires the index to be within the slice",
2048            (mid: usize = mid, len: usize = len) => mid <= len,
2049        );
2050
2051        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2052        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2053    }
2054
2055    /// Divides one mutable slice into two at an index, without doing bounds checking.
2056    ///
2057    /// The first will contain all indices from `[0, mid)` (excluding
2058    /// the index `mid` itself) and the second will contain all
2059    /// indices from `[mid, len)` (excluding the index `len` itself).
2060    ///
2061    /// For a safe alternative see [`split_at_mut`].
2062    ///
2063    /// # Safety
2064    ///
2065    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2066    /// even if the resulting reference is not used. The caller has to ensure that
2067    /// `0 <= mid <= self.len()`.
2068    ///
2069    /// [`split_at_mut`]: slice::split_at_mut
2070    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2071    ///
2072    /// # Examples
2073    ///
2074    /// ```
2075    /// let mut v = [1, 0, 3, 0, 5, 6];
2076    /// // scoped to restrict the lifetime of the borrows
2077    /// unsafe {
2078    ///     let (left, right) = v.split_at_mut_unchecked(2);
2079    ///     assert_eq!(left, [1, 0]);
2080    ///     assert_eq!(right, [3, 0, 5, 6]);
2081    ///     left[1] = 2;
2082    ///     right[1] = 4;
2083    /// }
2084    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2085    /// ```
2086    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2087    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2088    #[inline]
2089    #[must_use]
2090    #[track_caller]
2091    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2092        let len = self.len();
2093        let ptr = self.as_mut_ptr();
2094
2095        assert_unsafe_precondition!(
2096            check_library_ub,
2097            "slice::split_at_mut_unchecked requires the index to be within the slice",
2098            (mid: usize = mid, len: usize = len) => mid <= len,
2099        );
2100
2101        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2102        //
2103        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2104        // is fine.
2105        unsafe {
2106            (
2107                from_raw_parts_mut(ptr, mid),
2108                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2109            )
2110        }
2111    }
2112
2113    /// Divides one slice into two at an index, returning `None` if the slice is
2114    /// too short.
2115    ///
2116    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2117    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2118    /// second will contain all indices from `[mid, len)` (excluding the index
2119    /// `len` itself).
2120    ///
2121    /// Otherwise, if `mid > len`, returns `None`.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let v = [1, -2, 3, -4, 5, -6];
2127    ///
2128    /// {
2129    ///    let (left, right) = v.split_at_checked(0).unwrap();
2130    ///    assert_eq!(left, []);
2131    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2132    /// }
2133    ///
2134    /// {
2135    ///     let (left, right) = v.split_at_checked(2).unwrap();
2136    ///     assert_eq!(left, [1, -2]);
2137    ///     assert_eq!(right, [3, -4, 5, -6]);
2138    /// }
2139    ///
2140    /// {
2141    ///     let (left, right) = v.split_at_checked(6).unwrap();
2142    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2143    ///     assert_eq!(right, []);
2144    /// }
2145    ///
2146    /// assert_eq!(None, v.split_at_checked(7));
2147    /// ```
2148    #[stable(feature = "split_at_checked", since = "1.80.0")]
2149    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2150    #[inline]
2151    #[must_use]
2152    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2153        if mid <= self.len() {
2154            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2155            // fulfills the requirements of `split_at_unchecked`.
2156            Some(unsafe { self.split_at_unchecked(mid) })
2157        } else {
2158            None
2159        }
2160    }
2161
2162    /// Divides one mutable slice into two at an index, returning `None` if the
2163    /// slice is too short.
2164    ///
2165    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2166    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2167    /// second will contain all indices from `[mid, len)` (excluding the index
2168    /// `len` itself).
2169    ///
2170    /// Otherwise, if `mid > len`, returns `None`.
2171    ///
2172    /// # Examples
2173    ///
2174    /// ```
2175    /// let mut v = [1, 0, 3, 0, 5, 6];
2176    ///
2177    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2178    ///     assert_eq!(left, [1, 0]);
2179    ///     assert_eq!(right, [3, 0, 5, 6]);
2180    ///     left[1] = 2;
2181    ///     right[1] = 4;
2182    /// }
2183    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2184    ///
2185    /// assert_eq!(None, v.split_at_mut_checked(7));
2186    /// ```
2187    #[stable(feature = "split_at_checked", since = "1.80.0")]
2188    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2189    #[inline]
2190    #[must_use]
2191    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2192        if mid <= self.len() {
2193            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2194            // fulfills the requirements of `split_at_unchecked`.
2195            Some(unsafe { self.split_at_mut_unchecked(mid) })
2196        } else {
2197            None
2198        }
2199    }
2200
2201    /// Returns an iterator over subslices separated by elements that match
2202    /// `pred`. The matched element is not contained in the subslices.
2203    ///
2204    /// # Examples
2205    ///
2206    /// ```
2207    /// let slice = [10, 40, 33, 20];
2208    /// let mut iter = slice.split(|num| num % 3 == 0);
2209    ///
2210    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2211    /// assert_eq!(iter.next().unwrap(), &[20]);
2212    /// assert!(iter.next().is_none());
2213    /// ```
2214    ///
2215    /// If the first element is matched, an empty slice will be the first item
2216    /// returned by the iterator. Similarly, if the last element in the slice
2217    /// is matched, an empty slice will be the last item returned by the
2218    /// iterator:
2219    ///
2220    /// ```
2221    /// let slice = [10, 40, 33];
2222    /// let mut iter = slice.split(|num| num % 3 == 0);
2223    ///
2224    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2225    /// assert_eq!(iter.next().unwrap(), &[]);
2226    /// assert!(iter.next().is_none());
2227    /// ```
2228    ///
2229    /// If two matched elements are directly adjacent, an empty slice will be
2230    /// present between them:
2231    ///
2232    /// ```
2233    /// let slice = [10, 6, 33, 20];
2234    /// let mut iter = slice.split(|num| num % 3 == 0);
2235    ///
2236    /// assert_eq!(iter.next().unwrap(), &[10]);
2237    /// assert_eq!(iter.next().unwrap(), &[]);
2238    /// assert_eq!(iter.next().unwrap(), &[20]);
2239    /// assert!(iter.next().is_none());
2240    /// ```
2241    #[stable(feature = "rust1", since = "1.0.0")]
2242    #[inline]
2243    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2244    where
2245        F: FnMut(&T) -> bool,
2246    {
2247        Split::new(self, pred)
2248    }
2249
2250    /// Returns an iterator over mutable subslices separated by elements that
2251    /// match `pred`. The matched element is not contained in the subslices.
2252    ///
2253    /// # Examples
2254    ///
2255    /// ```
2256    /// let mut v = [10, 40, 30, 20, 60, 50];
2257    ///
2258    /// for group in v.split_mut(|num| *num % 3 == 0) {
2259    ///     group[0] = 1;
2260    /// }
2261    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2262    /// ```
2263    #[stable(feature = "rust1", since = "1.0.0")]
2264    #[inline]
2265    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2266    where
2267        F: FnMut(&T) -> bool,
2268    {
2269        SplitMut::new(self, pred)
2270    }
2271
2272    /// Returns an iterator over subslices separated by elements that match
2273    /// `pred`. The matched element is contained in the end of the previous
2274    /// subslice as a terminator.
2275    ///
2276    /// # Examples
2277    ///
2278    /// ```
2279    /// let slice = [10, 40, 33, 20];
2280    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2281    ///
2282    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2283    /// assert_eq!(iter.next().unwrap(), &[20]);
2284    /// assert!(iter.next().is_none());
2285    /// ```
2286    ///
2287    /// If the last element of the slice is matched,
2288    /// that element will be considered the terminator of the preceding slice.
2289    /// That slice will be the last item returned by the iterator.
2290    ///
2291    /// ```
2292    /// let slice = [3, 10, 40, 33];
2293    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2294    ///
2295    /// assert_eq!(iter.next().unwrap(), &[3]);
2296    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2297    /// assert!(iter.next().is_none());
2298    /// ```
2299    #[stable(feature = "split_inclusive", since = "1.51.0")]
2300    #[inline]
2301    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2302    where
2303        F: FnMut(&T) -> bool,
2304    {
2305        SplitInclusive::new(self, pred)
2306    }
2307
2308    /// Returns an iterator over mutable subslices separated by elements that
2309    /// match `pred`. The matched element is contained in the previous
2310    /// subslice as a terminator.
2311    ///
2312    /// # Examples
2313    ///
2314    /// ```
2315    /// let mut v = [10, 40, 30, 20, 60, 50];
2316    ///
2317    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2318    ///     let terminator_idx = group.len()-1;
2319    ///     group[terminator_idx] = 1;
2320    /// }
2321    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2322    /// ```
2323    #[stable(feature = "split_inclusive", since = "1.51.0")]
2324    #[inline]
2325    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2326    where
2327        F: FnMut(&T) -> bool,
2328    {
2329        SplitInclusiveMut::new(self, pred)
2330    }
2331
2332    /// Returns an iterator over subslices separated by elements that match
2333    /// `pred`, starting at the end of the slice and working backwards.
2334    /// The matched element is not contained in the subslices.
2335    ///
2336    /// # Examples
2337    ///
2338    /// ```
2339    /// let slice = [11, 22, 33, 0, 44, 55];
2340    /// let mut iter = slice.rsplit(|num| *num == 0);
2341    ///
2342    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2343    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2344    /// assert_eq!(iter.next(), None);
2345    /// ```
2346    ///
2347    /// As with `split()`, if the first or last element is matched, an empty
2348    /// slice will be the first (or last) item returned by the iterator.
2349    ///
2350    /// ```
2351    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2352    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2353    /// assert_eq!(it.next().unwrap(), &[]);
2354    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2355    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2356    /// assert_eq!(it.next().unwrap(), &[]);
2357    /// assert_eq!(it.next(), None);
2358    /// ```
2359    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2360    #[inline]
2361    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2362    where
2363        F: FnMut(&T) -> bool,
2364    {
2365        RSplit::new(self, pred)
2366    }
2367
2368    /// Returns an iterator over mutable subslices separated by elements that
2369    /// match `pred`, starting at the end of the slice and working
2370    /// backwards. The matched element is not contained in the subslices.
2371    ///
2372    /// # Examples
2373    ///
2374    /// ```
2375    /// let mut v = [100, 400, 300, 200, 600, 500];
2376    ///
2377    /// let mut count = 0;
2378    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2379    ///     count += 1;
2380    ///     group[0] = count;
2381    /// }
2382    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2383    /// ```
2384    ///
2385    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2386    #[inline]
2387    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2388    where
2389        F: FnMut(&T) -> bool,
2390    {
2391        RSplitMut::new(self, pred)
2392    }
2393
2394    /// Returns an iterator over subslices separated by elements that match
2395    /// `pred`, limited to returning at most `n` items. The matched element is
2396    /// not contained in the subslices.
2397    ///
2398    /// The last element returned, if any, will contain the remainder of the
2399    /// slice.
2400    ///
2401    /// # Examples
2402    ///
2403    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2404    /// `[20, 60, 50]`):
2405    ///
2406    /// ```
2407    /// let v = [10, 40, 30, 20, 60, 50];
2408    ///
2409    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2410    ///     println!("{group:?}");
2411    /// }
2412    /// ```
2413    #[stable(feature = "rust1", since = "1.0.0")]
2414    #[inline]
2415    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2416    where
2417        F: FnMut(&T) -> bool,
2418    {
2419        SplitN::new(self.split(pred), n)
2420    }
2421
2422    /// Returns an iterator over mutable subslices separated by elements that match
2423    /// `pred`, limited to returning at most `n` items. The matched element is
2424    /// not contained in the subslices.
2425    ///
2426    /// The last element returned, if any, will contain the remainder of the
2427    /// slice.
2428    ///
2429    /// # Examples
2430    ///
2431    /// ```
2432    /// let mut v = [10, 40, 30, 20, 60, 50];
2433    ///
2434    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2435    ///     group[0] = 1;
2436    /// }
2437    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2438    /// ```
2439    #[stable(feature = "rust1", since = "1.0.0")]
2440    #[inline]
2441    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2442    where
2443        F: FnMut(&T) -> bool,
2444    {
2445        SplitNMut::new(self.split_mut(pred), n)
2446    }
2447
2448    /// Returns an iterator over subslices separated by elements that match
2449    /// `pred` limited to returning at most `n` items. This starts at the end of
2450    /// the slice and works backwards. The matched element is not contained in
2451    /// the subslices.
2452    ///
2453    /// The last element returned, if any, will contain the remainder of the
2454    /// slice.
2455    ///
2456    /// # Examples
2457    ///
2458    /// Print the slice split once, starting from the end, by numbers divisible
2459    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2460    ///
2461    /// ```
2462    /// let v = [10, 40, 30, 20, 60, 50];
2463    ///
2464    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2465    ///     println!("{group:?}");
2466    /// }
2467    /// ```
2468    #[stable(feature = "rust1", since = "1.0.0")]
2469    #[inline]
2470    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2471    where
2472        F: FnMut(&T) -> bool,
2473    {
2474        RSplitN::new(self.rsplit(pred), n)
2475    }
2476
2477    /// Returns an iterator over subslices separated by elements that match
2478    /// `pred` limited to returning at most `n` items. This starts at the end of
2479    /// the slice and works backwards. The matched element is not contained in
2480    /// the subslices.
2481    ///
2482    /// The last element returned, if any, will contain the remainder of the
2483    /// slice.
2484    ///
2485    /// # Examples
2486    ///
2487    /// ```
2488    /// let mut s = [10, 40, 30, 20, 60, 50];
2489    ///
2490    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2491    ///     group[0] = 1;
2492    /// }
2493    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2494    /// ```
2495    #[stable(feature = "rust1", since = "1.0.0")]
2496    #[inline]
2497    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2498    where
2499        F: FnMut(&T) -> bool,
2500    {
2501        RSplitNMut::new(self.rsplit_mut(pred), n)
2502    }
2503
2504    /// Splits the slice on the first element that matches the specified
2505    /// predicate.
2506    ///
2507    /// If any matching elements are present in the slice, returns the prefix
2508    /// before the match and suffix after. The matching element itself is not
2509    /// included. If no elements match, returns `None`.
2510    ///
2511    /// # Examples
2512    ///
2513    /// ```
2514    /// #![feature(slice_split_once)]
2515    /// let s = [1, 2, 3, 2, 4];
2516    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2517    ///     &[1][..],
2518    ///     &[3, 2, 4][..]
2519    /// )));
2520    /// assert_eq!(s.split_once(|&x| x == 0), None);
2521    /// ```
2522    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2523    #[inline]
2524    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2525    where
2526        F: FnMut(&T) -> bool,
2527    {
2528        let index = self.iter().position(pred)?;
2529        Some((&self[..index], &self[index + 1..]))
2530    }
2531
2532    /// Splits the slice on the last element that matches the specified
2533    /// predicate.
2534    ///
2535    /// If any matching elements are present in the slice, returns the prefix
2536    /// before the match and suffix after. The matching element itself is not
2537    /// included. If no elements match, returns `None`.
2538    ///
2539    /// # Examples
2540    ///
2541    /// ```
2542    /// #![feature(slice_split_once)]
2543    /// let s = [1, 2, 3, 2, 4];
2544    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2545    ///     &[1, 2, 3][..],
2546    ///     &[4][..]
2547    /// )));
2548    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2549    /// ```
2550    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2551    #[inline]
2552    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2553    where
2554        F: FnMut(&T) -> bool,
2555    {
2556        let index = self.iter().rposition(pred)?;
2557        Some((&self[..index], &self[index + 1..]))
2558    }
2559
2560    /// Returns `true` if the slice contains an element with the given value.
2561    ///
2562    /// This operation is *O*(*n*).
2563    ///
2564    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2565    ///
2566    /// [`binary_search`]: slice::binary_search
2567    ///
2568    /// # Examples
2569    ///
2570    /// ```
2571    /// let v = [10, 40, 30];
2572    /// assert!(v.contains(&30));
2573    /// assert!(!v.contains(&50));
2574    /// ```
2575    ///
2576    /// If you do not have a `&T`, but some other value that you can compare
2577    /// with one (for example, `String` implements `PartialEq<str>`), you can
2578    /// use `iter().any`:
2579    ///
2580    /// ```
2581    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2582    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2583    /// assert!(!v.iter().any(|e| e == "hi"));
2584    /// ```
2585    #[stable(feature = "rust1", since = "1.0.0")]
2586    #[inline]
2587    #[must_use]
2588    pub fn contains(&self, x: &T) -> bool
2589    where
2590        T: PartialEq,
2591    {
2592        cmp::SliceContains::slice_contains(x, self)
2593    }
2594
2595    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2596    ///
2597    /// # Examples
2598    ///
2599    /// ```
2600    /// let v = [10, 40, 30];
2601    /// assert!(v.starts_with(&[10]));
2602    /// assert!(v.starts_with(&[10, 40]));
2603    /// assert!(v.starts_with(&v));
2604    /// assert!(!v.starts_with(&[50]));
2605    /// assert!(!v.starts_with(&[10, 50]));
2606    /// ```
2607    ///
2608    /// Always returns `true` if `needle` is an empty slice:
2609    ///
2610    /// ```
2611    /// let v = &[10, 40, 30];
2612    /// assert!(v.starts_with(&[]));
2613    /// let v: &[u8] = &[];
2614    /// assert!(v.starts_with(&[]));
2615    /// ```
2616    #[stable(feature = "rust1", since = "1.0.0")]
2617    #[must_use]
2618    pub fn starts_with(&self, needle: &[T]) -> bool
2619    where
2620        T: PartialEq,
2621    {
2622        let n = needle.len();
2623        self.len() >= n && needle == &self[..n]
2624    }
2625
2626    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2627    ///
2628    /// # Examples
2629    ///
2630    /// ```
2631    /// let v = [10, 40, 30];
2632    /// assert!(v.ends_with(&[30]));
2633    /// assert!(v.ends_with(&[40, 30]));
2634    /// assert!(v.ends_with(&v));
2635    /// assert!(!v.ends_with(&[50]));
2636    /// assert!(!v.ends_with(&[50, 30]));
2637    /// ```
2638    ///
2639    /// Always returns `true` if `needle` is an empty slice:
2640    ///
2641    /// ```
2642    /// let v = &[10, 40, 30];
2643    /// assert!(v.ends_with(&[]));
2644    /// let v: &[u8] = &[];
2645    /// assert!(v.ends_with(&[]));
2646    /// ```
2647    #[stable(feature = "rust1", since = "1.0.0")]
2648    #[must_use]
2649    pub fn ends_with(&self, needle: &[T]) -> bool
2650    where
2651        T: PartialEq,
2652    {
2653        let (m, n) = (self.len(), needle.len());
2654        m >= n && needle == &self[m - n..]
2655    }
2656
2657    /// Returns a subslice with the prefix removed.
2658    ///
2659    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2660    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2661    /// original slice, returns an empty slice.
2662    ///
2663    /// If the slice does not start with `prefix`, returns `None`.
2664    ///
2665    /// # Examples
2666    ///
2667    /// ```
2668    /// let v = &[10, 40, 30];
2669    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2670    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2671    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2672    /// assert_eq!(v.strip_prefix(&[50]), None);
2673    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2674    ///
2675    /// let prefix : &str = "he";
2676    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2677    ///            Some(b"llo".as_ref()));
2678    /// ```
2679    #[must_use = "returns the subslice without modifying the original"]
2680    #[stable(feature = "slice_strip", since = "1.51.0")]
2681    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2682    where
2683        T: PartialEq,
2684    {
2685        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2686        let prefix = prefix.as_slice();
2687        let n = prefix.len();
2688        if n <= self.len() {
2689            let (head, tail) = self.split_at(n);
2690            if head == prefix {
2691                return Some(tail);
2692            }
2693        }
2694        None
2695    }
2696
2697    /// Returns a subslice with the suffix removed.
2698    ///
2699    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2700    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2701    /// original slice, returns an empty slice.
2702    ///
2703    /// If the slice does not end with `suffix`, returns `None`.
2704    ///
2705    /// # Examples
2706    ///
2707    /// ```
2708    /// let v = &[10, 40, 30];
2709    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2710    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2711    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2712    /// assert_eq!(v.strip_suffix(&[50]), None);
2713    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2714    /// ```
2715    #[must_use = "returns the subslice without modifying the original"]
2716    #[stable(feature = "slice_strip", since = "1.51.0")]
2717    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2718    where
2719        T: PartialEq,
2720    {
2721        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2722        let suffix = suffix.as_slice();
2723        let (len, n) = (self.len(), suffix.len());
2724        if n <= len {
2725            let (head, tail) = self.split_at(len - n);
2726            if tail == suffix {
2727                return Some(head);
2728            }
2729        }
2730        None
2731    }
2732
2733    /// Returns a subslice with the prefix and suffix removed.
2734    ///
2735    /// If the slice starts with `prefix` and ends with `suffix`, returns the subslice after the
2736    /// prefix and before the suffix, wrapped in `Some`.
2737    ///
2738    /// If the slice does not start with `prefix` or does not end with `suffix`, returns `None`.
2739    ///
2740    /// # Examples
2741    ///
2742    /// ```
2743    /// #![feature(strip_circumfix)]
2744    ///
2745    /// let v = &[10, 50, 40, 30];
2746    /// assert_eq!(v.strip_circumfix(&[10], &[30]), Some(&[50, 40][..]));
2747    /// assert_eq!(v.strip_circumfix(&[10], &[40, 30]), Some(&[50][..]));
2748    /// assert_eq!(v.strip_circumfix(&[10, 50], &[40, 30]), Some(&[][..]));
2749    /// assert_eq!(v.strip_circumfix(&[50], &[30]), None);
2750    /// assert_eq!(v.strip_circumfix(&[10], &[40]), None);
2751    /// assert_eq!(v.strip_circumfix(&[], &[40, 30]), Some(&[10, 50][..]));
2752    /// assert_eq!(v.strip_circumfix(&[10, 50], &[]), Some(&[40, 30][..]));
2753    /// ```
2754    #[must_use = "returns the subslice without modifying the original"]
2755    #[unstable(feature = "strip_circumfix", issue = "147946")]
2756    pub fn strip_circumfix<S, P>(&self, prefix: &P, suffix: &S) -> Option<&[T]>
2757    where
2758        T: PartialEq,
2759        S: SlicePattern<Item = T> + ?Sized,
2760        P: SlicePattern<Item = T> + ?Sized,
2761    {
2762        self.strip_prefix(prefix)?.strip_suffix(suffix)
2763    }
2764
2765    /// Returns a subslice with the optional prefix removed.
2766    ///
2767    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2768    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2769    /// If `prefix` is equal to the original slice, returns an empty slice.
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// #![feature(trim_prefix_suffix)]
2775    ///
2776    /// let v = &[10, 40, 30];
2777    ///
2778    /// // Prefix present - removes it
2779    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2780    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2781    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2782    ///
2783    /// // Prefix absent - returns original slice
2784    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2785    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2786    ///
2787    /// let prefix : &str = "he";
2788    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2789    /// ```
2790    #[must_use = "returns the subslice without modifying the original"]
2791    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2792    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2793    where
2794        T: PartialEq,
2795    {
2796        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2797        let prefix = prefix.as_slice();
2798        let n = prefix.len();
2799        if n <= self.len() {
2800            let (head, tail) = self.split_at(n);
2801            if head == prefix {
2802                return tail;
2803            }
2804        }
2805        self
2806    }
2807
2808    /// Returns a subslice with the optional suffix removed.
2809    ///
2810    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2811    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2812    /// If `suffix` is equal to the original slice, returns an empty slice.
2813    ///
2814    /// # Examples
2815    ///
2816    /// ```
2817    /// #![feature(trim_prefix_suffix)]
2818    ///
2819    /// let v = &[10, 40, 30];
2820    ///
2821    /// // Suffix present - removes it
2822    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2823    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2824    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2825    ///
2826    /// // Suffix absent - returns original slice
2827    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2828    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2829    /// ```
2830    #[must_use = "returns the subslice without modifying the original"]
2831    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2832    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2833    where
2834        T: PartialEq,
2835    {
2836        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2837        let suffix = suffix.as_slice();
2838        let (len, n) = (self.len(), suffix.len());
2839        if n <= len {
2840            let (head, tail) = self.split_at(len - n);
2841            if tail == suffix {
2842                return head;
2843            }
2844        }
2845        self
2846    }
2847
2848    /// Binary searches this slice for a given element.
2849    /// If the slice is not sorted, the returned result is unspecified and
2850    /// meaningless.
2851    ///
2852    /// If the value is found then [`Result::Ok`] is returned, containing the
2853    /// index of the matching element. If there are multiple matches, then any
2854    /// one of the matches could be returned. The index is chosen
2855    /// deterministically, but is subject to change in future versions of Rust.
2856    /// If the value is not found then [`Result::Err`] is returned, containing
2857    /// the index where a matching element could be inserted while maintaining
2858    /// sorted order.
2859    ///
2860    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2861    ///
2862    /// [`binary_search_by`]: slice::binary_search_by
2863    /// [`binary_search_by_key`]: slice::binary_search_by_key
2864    /// [`partition_point`]: slice::partition_point
2865    ///
2866    /// # Examples
2867    ///
2868    /// Looks up a series of four elements. The first is found, with a
2869    /// uniquely determined position; the second and third are not
2870    /// found; the fourth could match any position in `[1, 4]`.
2871    ///
2872    /// ```
2873    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2874    ///
2875    /// assert_eq!(s.binary_search(&13),  Ok(9));
2876    /// assert_eq!(s.binary_search(&4),   Err(7));
2877    /// assert_eq!(s.binary_search(&100), Err(13));
2878    /// let r = s.binary_search(&1);
2879    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2880    /// ```
2881    ///
2882    /// If you want to find that whole *range* of matching items, rather than
2883    /// an arbitrary matching one, that can be done using [`partition_point`]:
2884    /// ```
2885    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2886    ///
2887    /// let low = s.partition_point(|x| x < &1);
2888    /// assert_eq!(low, 1);
2889    /// let high = s.partition_point(|x| x <= &1);
2890    /// assert_eq!(high, 5);
2891    /// let r = s.binary_search(&1);
2892    /// assert!((low..high).contains(&r.unwrap()));
2893    ///
2894    /// assert!(s[..low].iter().all(|&x| x < 1));
2895    /// assert!(s[low..high].iter().all(|&x| x == 1));
2896    /// assert!(s[high..].iter().all(|&x| x > 1));
2897    ///
2898    /// // For something not found, the "range" of equal items is empty
2899    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2900    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2901    /// assert_eq!(s.binary_search(&11), Err(9));
2902    /// ```
2903    ///
2904    /// If you want to insert an item to a sorted vector, while maintaining
2905    /// sort order, consider using [`partition_point`]:
2906    ///
2907    /// ```
2908    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2909    /// let num = 42;
2910    /// let idx = s.partition_point(|&x| x <= num);
2911    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2912    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2913    /// // to shift less elements.
2914    /// s.insert(idx, num);
2915    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2916    /// ```
2917    #[stable(feature = "rust1", since = "1.0.0")]
2918    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2919    where
2920        T: Ord,
2921    {
2922        self.binary_search_by(|p| p.cmp(x))
2923    }
2924
2925    /// Binary searches this slice with a comparator function.
2926    ///
2927    /// The comparator function should return an order code that indicates
2928    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2929    /// target.
2930    /// If the slice is not sorted or if the comparator function does not
2931    /// implement an order consistent with the sort order of the underlying
2932    /// slice, the returned result is unspecified and meaningless.
2933    ///
2934    /// If the value is found then [`Result::Ok`] is returned, containing the
2935    /// index of the matching element. If there are multiple matches, then any
2936    /// one of the matches could be returned. The index is chosen
2937    /// deterministically, but is subject to change in future versions of Rust.
2938    /// If the value is not found then [`Result::Err`] is returned, containing
2939    /// the index where a matching element could be inserted while maintaining
2940    /// sorted order.
2941    ///
2942    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2943    ///
2944    /// [`binary_search`]: slice::binary_search
2945    /// [`binary_search_by_key`]: slice::binary_search_by_key
2946    /// [`partition_point`]: slice::partition_point
2947    ///
2948    /// # Examples
2949    ///
2950    /// Looks up a series of four elements. The first is found, with a
2951    /// uniquely determined position; the second and third are not
2952    /// found; the fourth could match any position in `[1, 4]`.
2953    ///
2954    /// ```
2955    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2956    ///
2957    /// let seek = 13;
2958    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2959    /// let seek = 4;
2960    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2961    /// let seek = 100;
2962    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2963    /// let seek = 1;
2964    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2965    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2966    /// ```
2967    #[stable(feature = "rust1", since = "1.0.0")]
2968    #[inline]
2969    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2970    where
2971        F: FnMut(&'a T) -> Ordering,
2972    {
2973        let mut size = self.len();
2974        if size == 0 {
2975            return Err(0);
2976        }
2977        let mut base = 0usize;
2978
2979        // This loop intentionally doesn't have an early exit if the comparison
2980        // returns Equal. We want the number of loop iterations to depend *only*
2981        // on the size of the input slice so that the CPU can reliably predict
2982        // the loop count.
2983        while size > 1 {
2984            let half = size / 2;
2985            let mid = base + half;
2986
2987            // SAFETY: the call is made safe by the following invariants:
2988            // - `mid >= 0`: by definition
2989            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2990            let cmp = f(unsafe { self.get_unchecked(mid) });
2991
2992            // Binary search interacts poorly with branch prediction, so force
2993            // the compiler to use conditional moves if supported by the target
2994            // architecture.
2995            base = hint::select_unpredictable(cmp == Greater, base, mid);
2996
2997            // This is imprecise in the case where `size` is odd and the
2998            // comparison returns Greater: the mid element still gets included
2999            // by `size` even though it's known to be larger than the element
3000            // being searched for.
3001            //
3002            // This is fine though: we gain more performance by keeping the
3003            // loop iteration count invariant (and thus predictable) than we
3004            // lose from considering one additional element.
3005            size -= half;
3006        }
3007
3008        // SAFETY: base is always in [0, size) because base <= mid.
3009        let cmp = f(unsafe { self.get_unchecked(base) });
3010        if cmp == Equal {
3011            // SAFETY: same as the `get_unchecked` above.
3012            unsafe { hint::assert_unchecked(base < self.len()) };
3013            Ok(base)
3014        } else {
3015            let result = base + (cmp == Less) as usize;
3016            // SAFETY: same as the `get_unchecked` above.
3017            // Note that this is `<=`, unlike the assume in the `Ok` path.
3018            unsafe { hint::assert_unchecked(result <= self.len()) };
3019            Err(result)
3020        }
3021    }
3022
3023    /// Binary searches this slice with a key extraction function.
3024    ///
3025    /// Assumes that the slice is sorted by the key, for instance with
3026    /// [`sort_by_key`] using the same key extraction function.
3027    /// If the slice is not sorted by the key, the returned result is
3028    /// unspecified and meaningless.
3029    ///
3030    /// If the value is found then [`Result::Ok`] is returned, containing the
3031    /// index of the matching element. If there are multiple matches, then any
3032    /// one of the matches could be returned. The index is chosen
3033    /// deterministically, but is subject to change in future versions of Rust.
3034    /// If the value is not found then [`Result::Err`] is returned, containing
3035    /// the index where a matching element could be inserted while maintaining
3036    /// sorted order.
3037    ///
3038    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3039    ///
3040    /// [`sort_by_key`]: slice::sort_by_key
3041    /// [`binary_search`]: slice::binary_search
3042    /// [`binary_search_by`]: slice::binary_search_by
3043    /// [`partition_point`]: slice::partition_point
3044    ///
3045    /// # Examples
3046    ///
3047    /// Looks up a series of four elements in a slice of pairs sorted by
3048    /// their second elements. The first is found, with a uniquely
3049    /// determined position; the second and third are not found; the
3050    /// fourth could match any position in `[1, 4]`.
3051    ///
3052    /// ```
3053    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3054    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3055    ///          (1, 21), (2, 34), (4, 55)];
3056    ///
3057    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3058    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3059    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3060    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3061    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3062    /// ```
3063    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3064    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3065    // This breaks links when slice is displayed in core, but changing it to use relative links
3066    // would break when the item is re-exported. So allow the core links to be broken for now.
3067    #[allow(rustdoc::broken_intra_doc_links)]
3068    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3069    #[inline]
3070    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3071    where
3072        F: FnMut(&'a T) -> B,
3073        B: Ord,
3074    {
3075        self.binary_search_by(|k| f(k).cmp(b))
3076    }
3077
3078    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3079    ///
3080    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3081    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3082    ///
3083    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3084    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3085    /// is unspecified. See also the note on panicking below.
3086    ///
3087    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3088    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3089    /// examples see the [`Ord`] documentation.
3090    ///
3091    ///
3092    /// All original elements will remain in the slice and any possible modifications via interior
3093    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3094    ///
3095    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3096    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3097    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3098    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3099    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3100    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3101    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3102    /// a.partial_cmp(b).unwrap())`.
3103    ///
3104    /// # Current implementation
3105    ///
3106    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3107    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3108    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3109    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3110    ///
3111    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3112    /// slice is partially sorted.
3113    ///
3114    /// # Panics
3115    ///
3116    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3117    /// the [`Ord`] implementation panics.
3118    ///
3119    /// # Examples
3120    ///
3121    /// ```
3122    /// let mut v = [4, -5, 1, -3, 2];
3123    ///
3124    /// v.sort_unstable();
3125    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3126    /// ```
3127    ///
3128    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3129    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3130    #[stable(feature = "sort_unstable", since = "1.20.0")]
3131    #[inline]
3132    pub fn sort_unstable(&mut self)
3133    where
3134        T: Ord,
3135    {
3136        sort::unstable::sort(self, &mut T::lt);
3137    }
3138
3139    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3140    /// initial order of equal elements.
3141    ///
3142    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3143    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3144    ///
3145    /// If the comparison function `compare` does not implement a [total order], the function
3146    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3147    /// is unspecified. See also the note on panicking below.
3148    ///
3149    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3150    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3151    /// examples see the [`Ord`] documentation.
3152    ///
3153    /// All original elements will remain in the slice and any possible modifications via interior
3154    /// mutability are observed in the input. Same is true if `compare` panics.
3155    ///
3156    /// # Current implementation
3157    ///
3158    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3159    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3160    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3161    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3162    ///
3163    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3164    /// slice is partially sorted.
3165    ///
3166    /// # Panics
3167    ///
3168    /// May panic if the `compare` does not implement a [total order], or if
3169    /// the `compare` itself panics.
3170    ///
3171    /// # Examples
3172    ///
3173    /// ```
3174    /// let mut v = [4, -5, 1, -3, 2];
3175    /// v.sort_unstable_by(|a, b| a.cmp(b));
3176    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3177    ///
3178    /// // reverse sorting
3179    /// v.sort_unstable_by(|a, b| b.cmp(a));
3180    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3181    /// ```
3182    ///
3183    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3184    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3185    #[stable(feature = "sort_unstable", since = "1.20.0")]
3186    #[inline]
3187    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3188    where
3189        F: FnMut(&T, &T) -> Ordering,
3190    {
3191        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3192    }
3193
3194    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3195    /// the initial order of equal elements.
3196    ///
3197    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3198    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3199    ///
3200    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3201    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3202    /// is unspecified. See also the note on panicking below.
3203    ///
3204    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3205    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3206    /// examples see the [`Ord`] documentation.
3207    ///
3208    /// All original elements will remain in the slice and any possible modifications via interior
3209    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3210    ///
3211    /// # Current implementation
3212    ///
3213    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3214    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3215    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3216    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3217    ///
3218    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3219    /// slice is partially sorted.
3220    ///
3221    /// # Panics
3222    ///
3223    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3224    /// the [`Ord`] implementation panics.
3225    ///
3226    /// # Examples
3227    ///
3228    /// ```
3229    /// let mut v = [4i32, -5, 1, -3, 2];
3230    ///
3231    /// v.sort_unstable_by_key(|k| k.abs());
3232    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3233    /// ```
3234    ///
3235    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3236    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3237    #[stable(feature = "sort_unstable", since = "1.20.0")]
3238    #[inline]
3239    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3240    where
3241        F: FnMut(&T) -> K,
3242        K: Ord,
3243    {
3244        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3245    }
3246
3247    /// Partially sorts the slice in ascending order **without** preserving the initial order of equal elements.
3248    ///
3249    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3250    ///
3251    /// 1. Every element in `self[..start]` is smaller than or equal to
3252    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3253    /// 3. Every element in `self[end..]`.
3254    ///
3255    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3256    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3257    ///
3258    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3259    /// where *n* is the length of the slice and *k* is the length of the specified range.
3260    ///
3261    /// See the documentation of [`sort_unstable`] for implementation notes.
3262    ///
3263    /// # Panics
3264    ///
3265    /// May panic if the implementation of [`Ord`] for `T` does not implement a total order, or if
3266    /// the [`Ord`] implementation panics, or if the specified range is out of bounds.
3267    ///
3268    /// # Examples
3269    ///
3270    /// ```
3271    /// #![feature(slice_partial_sort_unstable)]
3272    ///
3273    /// let mut v = [4, -5, 1, -3, 2];
3274    ///
3275    /// // empty range at the beginning, nothing changed
3276    /// v.partial_sort_unstable(0..0);
3277    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3278    ///
3279    /// // empty range in the middle, partitioning the slice
3280    /// v.partial_sort_unstable(2..2);
3281    /// for i in 0..2 {
3282    ///    assert!(v[i] <= v[2]);
3283    /// }
3284    /// for i in 3..v.len() {
3285    ///   assert!(v[2] <= v[i]);
3286    /// }
3287    ///
3288    /// // single element range, same as select_nth_unstable
3289    /// v.partial_sort_unstable(2..3);
3290    /// for i in 0..2 {
3291    ///    assert!(v[i] <= v[2]);
3292    /// }
3293    /// for i in 3..v.len() {
3294    ///   assert!(v[2] <= v[i]);
3295    /// }
3296    ///
3297    /// // partial sort a subrange
3298    /// v.partial_sort_unstable(1..4);
3299    /// assert_eq!(&v[1..4], [-3, 1, 2]);
3300    ///
3301    /// // partial sort the whole range, same as sort_unstable
3302    /// v.partial_sort_unstable(..);
3303    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3304    /// ```
3305    ///
3306    /// [`sort_unstable`]: slice::sort_unstable
3307    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3308    #[inline]
3309    pub fn partial_sort_unstable<R>(&mut self, range: R)
3310    where
3311        T: Ord,
3312        R: RangeBounds<usize>,
3313    {
3314        sort::unstable::partial_sort(self, range, T::lt);
3315    }
3316
3317    /// Partially sorts the slice in ascending order with a comparison function, **without**
3318    /// preserving the initial order of equal elements.
3319    ///
3320    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3321    ///
3322    /// 1. Every element in `self[..start]` is smaller than or equal to
3323    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3324    /// 3. Every element in `self[end..]`.
3325    ///
3326    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3327    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3328    ///
3329    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3330    /// where *n* is the length of the slice and *k* is the length of the specified range.
3331    ///
3332    /// See the documentation of [`sort_unstable_by`] for implementation notes.
3333    ///
3334    /// # Panics
3335    ///
3336    /// May panic if the `compare` does not implement a total order, or if
3337    /// the `compare` itself panics, or if the specified range is out of bounds.
3338    ///
3339    /// # Examples
3340    ///
3341    /// ```
3342    /// #![feature(slice_partial_sort_unstable)]
3343    ///
3344    /// let mut v = [4, -5, 1, -3, 2];
3345    ///
3346    /// // empty range at the beginning, nothing changed
3347    /// v.partial_sort_unstable_by(0..0, |a, b| b.cmp(a));
3348    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3349    ///
3350    /// // empty range in the middle, partitioning the slice
3351    /// v.partial_sort_unstable_by(2..2, |a, b| b.cmp(a));
3352    /// for i in 0..2 {
3353    ///    assert!(v[i] >= v[2]);
3354    /// }
3355    /// for i in 3..v.len() {
3356    ///   assert!(v[2] >= v[i]);
3357    /// }
3358    ///
3359    /// // single element range, same as select_nth_unstable
3360    /// v.partial_sort_unstable_by(2..3, |a, b| b.cmp(a));
3361    /// for i in 0..2 {
3362    ///    assert!(v[i] >= v[2]);
3363    /// }
3364    /// for i in 3..v.len() {
3365    ///   assert!(v[2] >= v[i]);
3366    /// }
3367    ///
3368    /// // partial sort a subrange
3369    /// v.partial_sort_unstable_by(1..4, |a, b| b.cmp(a));
3370    /// assert_eq!(&v[1..4], [2, 1, -3]);
3371    ///
3372    /// // partial sort the whole range, same as sort_unstable
3373    /// v.partial_sort_unstable_by(.., |a, b| b.cmp(a));
3374    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3375    /// ```
3376    ///
3377    /// [`sort_unstable_by`]: slice::sort_unstable_by
3378    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3379    #[inline]
3380    pub fn partial_sort_unstable_by<F, R>(&mut self, range: R, mut compare: F)
3381    where
3382        F: FnMut(&T, &T) -> Ordering,
3383        R: RangeBounds<usize>,
3384    {
3385        sort::unstable::partial_sort(self, range, |a, b| compare(a, b) == Less);
3386    }
3387
3388    /// Partially sorts the slice in ascending order with a key extraction function, **without**
3389    /// preserving the initial order of equal elements.
3390    ///
3391    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3392    ///
3393    /// 1. Every element in `self[..start]` is smaller than or equal to
3394    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3395    /// 3. Every element in `self[end..]`.
3396    ///
3397    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3398    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3399    ///
3400    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3401    /// where *n* is the length of the slice and *k* is the length of the specified range.
3402    ///
3403    /// See the documentation of [`sort_unstable_by_key`] for implementation notes.
3404    ///
3405    /// # Panics
3406    ///
3407    /// May panic if the implementation of [`Ord`] for `K` does not implement a total order, or if
3408    /// the [`Ord`] implementation panics, or if the specified range is out of bounds.
3409    ///
3410    /// # Examples
3411    ///
3412    /// ```
3413    /// #![feature(slice_partial_sort_unstable)]
3414    ///
3415    /// let mut v = [4i32, -5, 1, -3, 2];
3416    ///
3417    /// // empty range at the beginning, nothing changed
3418    /// v.partial_sort_unstable_by_key(0..0, |k| k.abs());
3419    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3420    ///
3421    /// // empty range in the middle, partitioning the slice
3422    /// v.partial_sort_unstable_by_key(2..2, |k| k.abs());
3423    /// for i in 0..2 {
3424    ///    assert!(v[i].abs() <= v[2].abs());
3425    /// }
3426    /// for i in 3..v.len() {
3427    ///   assert!(v[2].abs() <= v[i].abs());
3428    /// }
3429    ///
3430    /// // single element range, same as select_nth_unstable
3431    /// v.partial_sort_unstable_by_key(2..3, |k| k.abs());
3432    /// for i in 0..2 {
3433    ///    assert!(v[i].abs() <= v[2].abs());
3434    /// }
3435    /// for i in 3..v.len() {
3436    ///   assert!(v[2].abs() <= v[i].abs());
3437    /// }
3438    ///
3439    /// // partial sort a subrange
3440    /// v.partial_sort_unstable_by_key(1..4, |k| k.abs());
3441    /// assert_eq!(&v[1..4], [2, -3, 4]);
3442    ///
3443    /// // partial sort the whole range, same as sort_unstable
3444    /// v.partial_sort_unstable_by_key(.., |k| k.abs());
3445    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3446    /// ```
3447    ///
3448    /// [`sort_unstable_by_key`]: slice::sort_unstable_by_key
3449    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3450    #[inline]
3451    pub fn partial_sort_unstable_by_key<K, F, R>(&mut self, range: R, mut f: F)
3452    where
3453        F: FnMut(&T) -> K,
3454        K: Ord,
3455        R: RangeBounds<usize>,
3456    {
3457        sort::unstable::partial_sort(self, range, |a, b| f(a).lt(&f(b)));
3458    }
3459
3460    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3461    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3462    /// it.
3463    ///
3464    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3465    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3466    /// function is also known as "kth element" in other libraries.
3467    ///
3468    /// Returns a triple that partitions the reordered slice:
3469    ///
3470    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3471    ///
3472    /// * The element at `index`.
3473    ///
3474    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3475    ///
3476    /// # Current implementation
3477    ///
3478    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3479    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3480    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3481    /// for all inputs.
3482    ///
3483    /// [`sort_unstable`]: slice::sort_unstable
3484    ///
3485    /// # Panics
3486    ///
3487    /// Panics when `index >= len()`, and so always panics on empty slices.
3488    ///
3489    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3490    ///
3491    /// # Examples
3492    ///
3493    /// ```
3494    /// let mut v = [-5i32, 4, 2, -3, 1];
3495    ///
3496    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3497    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3498    ///
3499    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3500    /// assert_eq!(median, &mut 1);
3501    /// assert!(greater == [4, 2] || greater == [2, 4]);
3502    ///
3503    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3504    /// // about the specified index.
3505    /// assert!(v == [-3, -5, 1, 2, 4] ||
3506    ///         v == [-5, -3, 1, 2, 4] ||
3507    ///         v == [-3, -5, 1, 4, 2] ||
3508    ///         v == [-5, -3, 1, 4, 2]);
3509    /// ```
3510    ///
3511    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3512    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3513    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3514    #[inline]
3515    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3516    where
3517        T: Ord,
3518    {
3519        sort::select::partition_at_index(self, index, T::lt)
3520    }
3521
3522    /// Reorders the slice with a comparator function such that the element at `index` is at a
3523    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3524    /// elements after will be `>=` to it, according to the comparator function.
3525    ///
3526    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3527    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3528    /// function is also known as "kth element" in other libraries.
3529    ///
3530    /// Returns a triple partitioning the reordered slice:
3531    ///
3532    /// * The unsorted subslice before `index`, whose elements all satisfy
3533    ///   `compare(x, self[index]).is_le()`.
3534    ///
3535    /// * The element at `index`.
3536    ///
3537    /// * The unsorted subslice after `index`, whose elements all satisfy
3538    ///   `compare(x, self[index]).is_ge()`.
3539    ///
3540    /// # Current implementation
3541    ///
3542    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3543    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3544    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3545    /// for all inputs.
3546    ///
3547    /// [`sort_unstable`]: slice::sort_unstable
3548    ///
3549    /// # Panics
3550    ///
3551    /// Panics when `index >= len()`, and so always panics on empty slices.
3552    ///
3553    /// May panic if `compare` does not implement a [total order].
3554    ///
3555    /// # Examples
3556    ///
3557    /// ```
3558    /// let mut v = [-5i32, 4, 2, -3, 1];
3559    ///
3560    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3561    /// // a reversed comparator.
3562    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3563    ///
3564    /// assert!(before == [4, 2] || before == [2, 4]);
3565    /// assert_eq!(median, &mut 1);
3566    /// assert!(after == [-3, -5] || after == [-5, -3]);
3567    ///
3568    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3569    /// // about the specified index.
3570    /// assert!(v == [2, 4, 1, -5, -3] ||
3571    ///         v == [2, 4, 1, -3, -5] ||
3572    ///         v == [4, 2, 1, -5, -3] ||
3573    ///         v == [4, 2, 1, -3, -5]);
3574    /// ```
3575    ///
3576    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3577    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3578    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3579    #[inline]
3580    pub fn select_nth_unstable_by<F>(
3581        &mut self,
3582        index: usize,
3583        mut compare: F,
3584    ) -> (&mut [T], &mut T, &mut [T])
3585    where
3586        F: FnMut(&T, &T) -> Ordering,
3587    {
3588        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3589    }
3590
3591    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3592    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3593    /// and all elements after will have keys `>=` to it.
3594    ///
3595    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3596    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3597    /// function is also known as "kth element" in other libraries.
3598    ///
3599    /// Returns a triple partitioning the reordered slice:
3600    ///
3601    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3602    ///
3603    /// * The element at `index`.
3604    ///
3605    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3606    ///
3607    /// # Current implementation
3608    ///
3609    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3610    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3611    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3612    /// for all inputs.
3613    ///
3614    /// [`sort_unstable`]: slice::sort_unstable
3615    ///
3616    /// # Panics
3617    ///
3618    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3619    ///
3620    /// May panic if `K: Ord` does not implement a total order.
3621    ///
3622    /// # Examples
3623    ///
3624    /// ```
3625    /// let mut v = [-5i32, 4, 1, -3, 2];
3626    ///
3627    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3628    /// // `>=` to it.
3629    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3630    ///
3631    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3632    /// assert_eq!(median, &mut -3);
3633    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3634    ///
3635    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3636    /// // about the specified index.
3637    /// assert!(v == [1, 2, -3, 4, -5] ||
3638    ///         v == [1, 2, -3, -5, 4] ||
3639    ///         v == [2, 1, -3, 4, -5] ||
3640    ///         v == [2, 1, -3, -5, 4]);
3641    /// ```
3642    ///
3643    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3644    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3645    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3646    #[inline]
3647    pub fn select_nth_unstable_by_key<K, F>(
3648        &mut self,
3649        index: usize,
3650        mut f: F,
3651    ) -> (&mut [T], &mut T, &mut [T])
3652    where
3653        F: FnMut(&T) -> K,
3654        K: Ord,
3655    {
3656        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3657    }
3658
3659    /// Moves all consecutive repeated elements to the end of the slice according to the
3660    /// [`PartialEq`] trait implementation.
3661    ///
3662    /// Returns two slices. The first contains no consecutive repeated elements.
3663    /// The second contains all the duplicates in no specified order.
3664    ///
3665    /// If the slice is sorted, the first returned slice contains no duplicates.
3666    ///
3667    /// # Examples
3668    ///
3669    /// ```
3670    /// #![feature(slice_partition_dedup)]
3671    ///
3672    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3673    ///
3674    /// let (dedup, duplicates) = slice.partition_dedup();
3675    ///
3676    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3677    /// assert_eq!(duplicates, [2, 3, 1]);
3678    /// ```
3679    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3680    #[inline]
3681    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3682    where
3683        T: PartialEq,
3684    {
3685        self.partition_dedup_by(|a, b| a == b)
3686    }
3687
3688    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3689    /// a given equality relation.
3690    ///
3691    /// Returns two slices. The first contains no consecutive repeated elements.
3692    /// The second contains all the duplicates in no specified order.
3693    ///
3694    /// The `same_bucket` function is passed references to two elements from the slice and
3695    /// must determine if the elements compare equal. The elements are passed in opposite order
3696    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3697    /// at the end of the slice.
3698    ///
3699    /// If the slice is sorted, the first returned slice contains no duplicates.
3700    ///
3701    /// # Examples
3702    ///
3703    /// ```
3704    /// #![feature(slice_partition_dedup)]
3705    ///
3706    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3707    ///
3708    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3709    ///
3710    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3711    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3712    /// ```
3713    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3714    #[inline]
3715    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3716    where
3717        F: FnMut(&mut T, &mut T) -> bool,
3718    {
3719        // Although we have a mutable reference to `self`, we cannot make
3720        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3721        // must ensure that the slice is in a valid state at all times.
3722        //
3723        // The way that we handle this is by using swaps; we iterate
3724        // over all the elements, swapping as we go so that at the end
3725        // the elements we wish to keep are in the front, and those we
3726        // wish to reject are at the back. We can then split the slice.
3727        // This operation is still `O(n)`.
3728        //
3729        // Example: We start in this state, where `r` represents "next
3730        // read" and `w` represents "next_write".
3731        //
3732        //           r
3733        //     +---+---+---+---+---+---+
3734        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3735        //     +---+---+---+---+---+---+
3736        //           w
3737        //
3738        // Comparing self[r] against self[w-1], this is not a duplicate, so
3739        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3740        // r and w, leaving us with:
3741        //
3742        //               r
3743        //     +---+---+---+---+---+---+
3744        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3745        //     +---+---+---+---+---+---+
3746        //               w
3747        //
3748        // Comparing self[r] against self[w-1], this value is a duplicate,
3749        // so we increment `r` but leave everything else unchanged:
3750        //
3751        //                   r
3752        //     +---+---+---+---+---+---+
3753        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3754        //     +---+---+---+---+---+---+
3755        //               w
3756        //
3757        // Comparing self[r] against self[w-1], this is not a duplicate,
3758        // so swap self[r] and self[w] and advance r and w:
3759        //
3760        //                       r
3761        //     +---+---+---+---+---+---+
3762        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3763        //     +---+---+---+---+---+---+
3764        //                   w
3765        //
3766        // Not a duplicate, repeat:
3767        //
3768        //                           r
3769        //     +---+---+---+---+---+---+
3770        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3771        //     +---+---+---+---+---+---+
3772        //                       w
3773        //
3774        // Duplicate, advance r. End of slice. Split at w.
3775
3776        let len = self.len();
3777        if len <= 1 {
3778            return (self, &mut []);
3779        }
3780
3781        let ptr = self.as_mut_ptr();
3782        let mut next_read: usize = 1;
3783        let mut next_write: usize = 1;
3784
3785        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3786        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3787        // one element before `ptr_write`, but `next_write` starts at 1, so
3788        // `prev_ptr_write` is never less than 0 and is inside the slice.
3789        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3790        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3791        // and `prev_ptr_write.offset(1)`.
3792        //
3793        // `next_write` is also incremented at most once per loop at most meaning
3794        // no element is skipped when it may need to be swapped.
3795        //
3796        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3797        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3798        // The explanation is simply that `next_read >= next_write` is always true,
3799        // thus `next_read > next_write - 1` is too.
3800        unsafe {
3801            // Avoid bounds checks by using raw pointers.
3802            while next_read < len {
3803                let ptr_read = ptr.add(next_read);
3804                let prev_ptr_write = ptr.add(next_write - 1);
3805                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3806                    if next_read != next_write {
3807                        let ptr_write = prev_ptr_write.add(1);
3808                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3809                    }
3810                    next_write += 1;
3811                }
3812                next_read += 1;
3813            }
3814        }
3815
3816        self.split_at_mut(next_write)
3817    }
3818
3819    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3820    /// to the same key.
3821    ///
3822    /// Returns two slices. The first contains no consecutive repeated elements.
3823    /// The second contains all the duplicates in no specified order.
3824    ///
3825    /// If the slice is sorted, the first returned slice contains no duplicates.
3826    ///
3827    /// # Examples
3828    ///
3829    /// ```
3830    /// #![feature(slice_partition_dedup)]
3831    ///
3832    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3833    ///
3834    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3835    ///
3836    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3837    /// assert_eq!(duplicates, [21, 30, 13]);
3838    /// ```
3839    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3840    #[inline]
3841    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3842    where
3843        F: FnMut(&mut T) -> K,
3844        K: PartialEq,
3845    {
3846        self.partition_dedup_by(|a, b| key(a) == key(b))
3847    }
3848
3849    /// Rotates the slice in-place such that the first `mid` elements of the
3850    /// slice move to the end while the last `self.len() - mid` elements move to
3851    /// the front.
3852    ///
3853    /// After calling `rotate_left`, the element previously at index `mid` will
3854    /// become the first element in the slice.
3855    ///
3856    /// # Panics
3857    ///
3858    /// This function will panic if `mid` is greater than the length of the
3859    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3860    /// rotation.
3861    ///
3862    /// # Complexity
3863    ///
3864    /// Takes linear (in `self.len()`) time.
3865    ///
3866    /// # Examples
3867    ///
3868    /// ```
3869    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3870    /// a.rotate_left(2);
3871    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3872    /// ```
3873    ///
3874    /// Rotating a subslice:
3875    ///
3876    /// ```
3877    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3878    /// a[1..5].rotate_left(1);
3879    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3880    /// ```
3881    #[stable(feature = "slice_rotate", since = "1.26.0")]
3882    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3883    pub const fn rotate_left(&mut self, mid: usize) {
3884        assert!(mid <= self.len());
3885        let k = self.len() - mid;
3886        let p = self.as_mut_ptr();
3887
3888        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3889        // valid for reading and writing, as required by `ptr_rotate`.
3890        unsafe {
3891            rotate::ptr_rotate(mid, p.add(mid), k);
3892        }
3893    }
3894
3895    /// Rotates the slice in-place such that the first `self.len() - k`
3896    /// elements of the slice move to the end while the last `k` elements move
3897    /// to the front.
3898    ///
3899    /// After calling `rotate_right`, the element previously at index
3900    /// `self.len() - k` will become the first element in the slice.
3901    ///
3902    /// # Panics
3903    ///
3904    /// This function will panic if `k` is greater than the length of the
3905    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3906    /// rotation.
3907    ///
3908    /// # Complexity
3909    ///
3910    /// Takes linear (in `self.len()`) time.
3911    ///
3912    /// # Examples
3913    ///
3914    /// ```
3915    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3916    /// a.rotate_right(2);
3917    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3918    /// ```
3919    ///
3920    /// Rotating a subslice:
3921    ///
3922    /// ```
3923    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3924    /// a[1..5].rotate_right(1);
3925    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3926    /// ```
3927    #[stable(feature = "slice_rotate", since = "1.26.0")]
3928    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3929    pub const fn rotate_right(&mut self, k: usize) {
3930        assert!(k <= self.len());
3931        let mid = self.len() - k;
3932        let p = self.as_mut_ptr();
3933
3934        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3935        // valid for reading and writing, as required by `ptr_rotate`.
3936        unsafe {
3937            rotate::ptr_rotate(mid, p.add(mid), k);
3938        }
3939    }
3940
3941    /// Fills `self` with elements by cloning `value`.
3942    ///
3943    /// # Examples
3944    ///
3945    /// ```
3946    /// let mut buf = vec![0; 10];
3947    /// buf.fill(1);
3948    /// assert_eq!(buf, vec![1; 10]);
3949    /// ```
3950    #[doc(alias = "memset")]
3951    #[stable(feature = "slice_fill", since = "1.50.0")]
3952    pub fn fill(&mut self, value: T)
3953    where
3954        T: Clone,
3955    {
3956        specialize::SpecFill::spec_fill(self, value);
3957    }
3958
3959    /// Fills `self` with elements returned by calling a closure repeatedly.
3960    ///
3961    /// This method uses a closure to create new values. If you'd rather
3962    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3963    /// trait to generate values, you can pass [`Default::default`] as the
3964    /// argument.
3965    ///
3966    /// [`fill`]: slice::fill
3967    ///
3968    /// # Examples
3969    ///
3970    /// ```
3971    /// let mut buf = vec![1; 10];
3972    /// buf.fill_with(Default::default);
3973    /// assert_eq!(buf, vec![0; 10]);
3974    /// ```
3975    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3976    pub fn fill_with<F>(&mut self, mut f: F)
3977    where
3978        F: FnMut() -> T,
3979    {
3980        for el in self {
3981            *el = f();
3982        }
3983    }
3984
3985    /// Copies the elements from `src` into `self`.
3986    ///
3987    /// The length of `src` must be the same as `self`.
3988    ///
3989    /// # Panics
3990    ///
3991    /// This function will panic if the two slices have different lengths.
3992    ///
3993    /// # Examples
3994    ///
3995    /// Cloning two elements from a slice into another:
3996    ///
3997    /// ```
3998    /// let src = [1, 2, 3, 4];
3999    /// let mut dst = [0, 0];
4000    ///
4001    /// // Because the slices have to be the same length,
4002    /// // we slice the source slice from four elements
4003    /// // to two. It will panic if we don't do this.
4004    /// dst.clone_from_slice(&src[2..]);
4005    ///
4006    /// assert_eq!(src, [1, 2, 3, 4]);
4007    /// assert_eq!(dst, [3, 4]);
4008    /// ```
4009    ///
4010    /// Rust enforces that there can only be one mutable reference with no
4011    /// immutable references to a particular piece of data in a particular
4012    /// scope. Because of this, attempting to use `clone_from_slice` on a
4013    /// single slice will result in a compile failure:
4014    ///
4015    /// ```compile_fail
4016    /// let mut slice = [1, 2, 3, 4, 5];
4017    ///
4018    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
4019    /// ```
4020    ///
4021    /// To work around this, we can use [`split_at_mut`] to create two distinct
4022    /// sub-slices from a slice:
4023    ///
4024    /// ```
4025    /// let mut slice = [1, 2, 3, 4, 5];
4026    ///
4027    /// {
4028    ///     let (left, right) = slice.split_at_mut(2);
4029    ///     left.clone_from_slice(&right[1..]);
4030    /// }
4031    ///
4032    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
4033    /// ```
4034    ///
4035    /// [`copy_from_slice`]: slice::copy_from_slice
4036    /// [`split_at_mut`]: slice::split_at_mut
4037    #[stable(feature = "clone_from_slice", since = "1.7.0")]
4038    #[track_caller]
4039    pub fn clone_from_slice(&mut self, src: &[T])
4040    where
4041        T: Clone,
4042    {
4043        self.spec_clone_from(src);
4044    }
4045
4046    /// Copies all elements from `src` into `self`, using a memcpy.
4047    ///
4048    /// The length of `src` must be the same as `self`.
4049    ///
4050    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
4051    ///
4052    /// # Panics
4053    ///
4054    /// This function will panic if the two slices have different lengths.
4055    ///
4056    /// # Examples
4057    ///
4058    /// Copying two elements from a slice into another:
4059    ///
4060    /// ```
4061    /// let src = [1, 2, 3, 4];
4062    /// let mut dst = [0, 0];
4063    ///
4064    /// // Because the slices have to be the same length,
4065    /// // we slice the source slice from four elements
4066    /// // to two. It will panic if we don't do this.
4067    /// dst.copy_from_slice(&src[2..]);
4068    ///
4069    /// assert_eq!(src, [1, 2, 3, 4]);
4070    /// assert_eq!(dst, [3, 4]);
4071    /// ```
4072    ///
4073    /// Rust enforces that there can only be one mutable reference with no
4074    /// immutable references to a particular piece of data in a particular
4075    /// scope. Because of this, attempting to use `copy_from_slice` on a
4076    /// single slice will result in a compile failure:
4077    ///
4078    /// ```compile_fail
4079    /// let mut slice = [1, 2, 3, 4, 5];
4080    ///
4081    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
4082    /// ```
4083    ///
4084    /// To work around this, we can use [`split_at_mut`] to create two distinct
4085    /// sub-slices from a slice:
4086    ///
4087    /// ```
4088    /// let mut slice = [1, 2, 3, 4, 5];
4089    ///
4090    /// {
4091    ///     let (left, right) = slice.split_at_mut(2);
4092    ///     left.copy_from_slice(&right[1..]);
4093    /// }
4094    ///
4095    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
4096    /// ```
4097    ///
4098    /// [`clone_from_slice`]: slice::clone_from_slice
4099    /// [`split_at_mut`]: slice::split_at_mut
4100    #[doc(alias = "memcpy")]
4101    #[inline]
4102    #[stable(feature = "copy_from_slice", since = "1.9.0")]
4103    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
4104    #[track_caller]
4105    pub const fn copy_from_slice(&mut self, src: &[T])
4106    where
4107        T: Copy,
4108    {
4109        // SAFETY: `T` implements `Copy`.
4110        unsafe { copy_from_slice_impl(self, src) }
4111    }
4112
4113    /// Copies elements from one part of the slice to another part of itself,
4114    /// using a memmove.
4115    ///
4116    /// `src` is the range within `self` to copy from. `dest` is the starting
4117    /// index of the range within `self` to copy to, which will have the same
4118    /// length as `src`. The two ranges may overlap. The ends of the two ranges
4119    /// must be less than or equal to `self.len()`.
4120    ///
4121    /// # Panics
4122    ///
4123    /// This function will panic if either range exceeds the end of the slice,
4124    /// or if the end of `src` is before the start.
4125    ///
4126    /// # Examples
4127    ///
4128    /// Copying four bytes within a slice:
4129    ///
4130    /// ```
4131    /// let mut bytes = *b"Hello, World!";
4132    ///
4133    /// bytes.copy_within(1..5, 8);
4134    ///
4135    /// assert_eq!(&bytes, b"Hello, Wello!");
4136    /// ```
4137    #[stable(feature = "copy_within", since = "1.37.0")]
4138    #[track_caller]
4139    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
4140    where
4141        T: Copy,
4142    {
4143        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
4144        let count = src_end - src_start;
4145        assert!(dest <= self.len() - count, "dest is out of bounds");
4146        // SAFETY: the conditions for `ptr::copy` have all been checked above,
4147        // as have those for `ptr::add`.
4148        unsafe {
4149            // Derive both `src_ptr` and `dest_ptr` from the same loan
4150            let ptr = self.as_mut_ptr();
4151            let src_ptr = ptr.add(src_start);
4152            let dest_ptr = ptr.add(dest);
4153            ptr::copy(src_ptr, dest_ptr, count);
4154        }
4155    }
4156
4157    /// Swaps all elements in `self` with those in `other`.
4158    ///
4159    /// The length of `other` must be the same as `self`.
4160    ///
4161    /// # Panics
4162    ///
4163    /// This function will panic if the two slices have different lengths.
4164    ///
4165    /// # Example
4166    ///
4167    /// Swapping two elements across slices:
4168    ///
4169    /// ```
4170    /// let mut slice1 = [0, 0];
4171    /// let mut slice2 = [1, 2, 3, 4];
4172    ///
4173    /// slice1.swap_with_slice(&mut slice2[2..]);
4174    ///
4175    /// assert_eq!(slice1, [3, 4]);
4176    /// assert_eq!(slice2, [1, 2, 0, 0]);
4177    /// ```
4178    ///
4179    /// Rust enforces that there can only be one mutable reference to a
4180    /// particular piece of data in a particular scope. Because of this,
4181    /// attempting to use `swap_with_slice` on a single slice will result in
4182    /// a compile failure:
4183    ///
4184    /// ```compile_fail
4185    /// let mut slice = [1, 2, 3, 4, 5];
4186    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
4187    /// ```
4188    ///
4189    /// To work around this, we can use [`split_at_mut`] to create two distinct
4190    /// mutable sub-slices from a slice:
4191    ///
4192    /// ```
4193    /// let mut slice = [1, 2, 3, 4, 5];
4194    ///
4195    /// {
4196    ///     let (left, right) = slice.split_at_mut(2);
4197    ///     left.swap_with_slice(&mut right[1..]);
4198    /// }
4199    ///
4200    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
4201    /// ```
4202    ///
4203    /// [`split_at_mut`]: slice::split_at_mut
4204    #[stable(feature = "swap_with_slice", since = "1.27.0")]
4205    #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
4206    #[track_caller]
4207    pub const fn swap_with_slice(&mut self, other: &mut [T]) {
4208        assert!(self.len() == other.len(), "destination and source slices have different lengths");
4209        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
4210        // checked to have the same length. The slices cannot overlap because
4211        // mutable references are exclusive.
4212        unsafe {
4213            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
4214        }
4215    }
4216
4217    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4218    fn align_to_offsets<U>(&self) -> (usize, usize) {
4219        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4220        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4221        //
4222        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4223        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4224        // place of every 3 Ts in the `rest` slice. A bit more complicated.
4225        //
4226        // Formula to calculate this is:
4227        //
4228        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4229        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4230        //
4231        // Expanded and simplified:
4232        //
4233        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4234        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4235        //
4236        // Luckily since all this is constant-evaluated... performance here matters not!
4237        const fn gcd(a: usize, b: usize) -> usize {
4238            if b == 0 { a } else { gcd(b, a % b) }
4239        }
4240
4241        // Explicitly wrap the function call in a const block so it gets
4242        // constant-evaluated even in debug mode.
4243        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4244        let ts: usize = size_of::<U>() / gcd;
4245        let us: usize = size_of::<T>() / gcd;
4246
4247        // Armed with this knowledge, we can find how many `U`s we can fit!
4248        let us_len = self.len() / ts * us;
4249        // And how many `T`s will be in the trailing slice!
4250        let ts_len = self.len() % ts;
4251        (us_len, ts_len)
4252    }
4253
4254    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4255    /// maintained.
4256    ///
4257    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4258    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4259    /// the given alignment constraint and element size.
4260    ///
4261    /// This method has no purpose when either input element `T` or output element `U` are
4262    /// zero-sized and will return the original slice without splitting anything.
4263    ///
4264    /// # Safety
4265    ///
4266    /// This method is essentially a `transmute` with respect to the elements in the returned
4267    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4268    ///
4269    /// # Examples
4270    ///
4271    /// Basic usage:
4272    ///
4273    /// ```
4274    /// unsafe {
4275    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4276    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4277    ///     // less_efficient_algorithm_for_bytes(prefix);
4278    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4279    ///     // less_efficient_algorithm_for_bytes(suffix);
4280    /// }
4281    /// ```
4282    #[stable(feature = "slice_align_to", since = "1.30.0")]
4283    #[must_use]
4284    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4285        // Note that most of this function will be constant-evaluated,
4286        if U::IS_ZST || T::IS_ZST {
4287            // handle ZSTs specially, which is – don't handle them at all.
4288            return (self, &[], &[]);
4289        }
4290
4291        // First, find at what point do we split between the first and 2nd slice. Easy with
4292        // ptr.align_offset.
4293        let ptr = self.as_ptr();
4294        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4295        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4296        if offset > self.len() {
4297            (self, &[], &[])
4298        } else {
4299            let (left, rest) = self.split_at(offset);
4300            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4301            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4302            #[cfg(miri)]
4303            crate::intrinsics::miri_promise_symbolic_alignment(
4304                rest.as_ptr().cast(),
4305                align_of::<U>(),
4306            );
4307            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4308            // since the caller guarantees that we can transmute `T` to `U` safely.
4309            unsafe {
4310                (
4311                    left,
4312                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4313                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4314                )
4315            }
4316        }
4317    }
4318
4319    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4320    /// types is maintained.
4321    ///
4322    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4323    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4324    /// the given alignment constraint and element size.
4325    ///
4326    /// This method has no purpose when either input element `T` or output element `U` are
4327    /// zero-sized and will return the original slice without splitting anything.
4328    ///
4329    /// # Safety
4330    ///
4331    /// This method is essentially a `transmute` with respect to the elements in the returned
4332    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4333    ///
4334    /// # Examples
4335    ///
4336    /// Basic usage:
4337    ///
4338    /// ```
4339    /// unsafe {
4340    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4341    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4342    ///     // less_efficient_algorithm_for_bytes(prefix);
4343    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4344    ///     // less_efficient_algorithm_for_bytes(suffix);
4345    /// }
4346    /// ```
4347    #[stable(feature = "slice_align_to", since = "1.30.0")]
4348    #[must_use]
4349    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4350        // Note that most of this function will be constant-evaluated,
4351        if U::IS_ZST || T::IS_ZST {
4352            // handle ZSTs specially, which is – don't handle them at all.
4353            return (self, &mut [], &mut []);
4354        }
4355
4356        // First, find at what point do we split between the first and 2nd slice. Easy with
4357        // ptr.align_offset.
4358        let ptr = self.as_ptr();
4359        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4360        // rest of the method. This is done by passing a pointer to &[T] with an
4361        // alignment targeted for U.
4362        // `crate::ptr::align_offset` is called with a correctly aligned and
4363        // valid pointer `ptr` (it comes from a reference to `self`) and with
4364        // a size that is a power of two (since it comes from the alignment for U),
4365        // satisfying its safety constraints.
4366        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4367        if offset > self.len() {
4368            (self, &mut [], &mut [])
4369        } else {
4370            let (left, rest) = self.split_at_mut(offset);
4371            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4372            let rest_len = rest.len();
4373            let mut_ptr = rest.as_mut_ptr();
4374            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4375            #[cfg(miri)]
4376            crate::intrinsics::miri_promise_symbolic_alignment(
4377                mut_ptr.cast() as *const (),
4378                align_of::<U>(),
4379            );
4380            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4381            // SAFETY: see comments for `align_to`.
4382            unsafe {
4383                (
4384                    left,
4385                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4386                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4387                )
4388            }
4389        }
4390    }
4391
4392    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4393    ///
4394    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4395    /// guarantees as that method.
4396    ///
4397    /// # Panics
4398    ///
4399    /// This will panic if the size of the SIMD type is different from
4400    /// `LANES` times that of the scalar.
4401    ///
4402    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4403    /// that from ever happening, as only power-of-two numbers of lanes are
4404    /// supported.  It's possible that, in the future, those restrictions might
4405    /// be lifted in a way that would make it possible to see panics from this
4406    /// method for something like `LANES == 3`.
4407    ///
4408    /// # Examples
4409    ///
4410    /// ```
4411    /// #![feature(portable_simd)]
4412    /// use core::simd::prelude::*;
4413    ///
4414    /// let short = &[1, 2, 3];
4415    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4416    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4417    ///
4418    /// // They might be split in any possible way between prefix and suffix
4419    /// let it = prefix.iter().chain(suffix).copied();
4420    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4421    ///
4422    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4423    ///     use std::ops::Add;
4424    ///     let (prefix, middle, suffix) = x.as_simd();
4425    ///     let sums = f32x4::from_array([
4426    ///         prefix.iter().copied().sum(),
4427    ///         0.0,
4428    ///         0.0,
4429    ///         suffix.iter().copied().sum(),
4430    ///     ]);
4431    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4432    ///     sums.reduce_sum()
4433    /// }
4434    ///
4435    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4436    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4437    /// ```
4438    #[unstable(feature = "portable_simd", issue = "86656")]
4439    #[must_use]
4440    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4441    where
4442        Simd<T, LANES>: AsRef<[T; LANES]>,
4443        T: simd::SimdElement,
4444        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4445    {
4446        // These are expected to always match, as vector types are laid out like
4447        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4448        // might as well double-check since it'll optimize away anyhow.
4449        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4450
4451        // SAFETY: The simd types have the same layout as arrays, just with
4452        // potentially-higher alignment, so the de-facto transmutes are sound.
4453        unsafe { self.align_to() }
4454    }
4455
4456    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4457    /// and a mutable suffix.
4458    ///
4459    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4460    /// guarantees as that method.
4461    ///
4462    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4463    ///
4464    /// # Panics
4465    ///
4466    /// This will panic if the size of the SIMD type is different from
4467    /// `LANES` times that of the scalar.
4468    ///
4469    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4470    /// that from ever happening, as only power-of-two numbers of lanes are
4471    /// supported.  It's possible that, in the future, those restrictions might
4472    /// be lifted in a way that would make it possible to see panics from this
4473    /// method for something like `LANES == 3`.
4474    #[unstable(feature = "portable_simd", issue = "86656")]
4475    #[must_use]
4476    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4477    where
4478        Simd<T, LANES>: AsMut<[T; LANES]>,
4479        T: simd::SimdElement,
4480        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4481    {
4482        // These are expected to always match, as vector types are laid out like
4483        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4484        // might as well double-check since it'll optimize away anyhow.
4485        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4486
4487        // SAFETY: The simd types have the same layout as arrays, just with
4488        // potentially-higher alignment, so the de-facto transmutes are sound.
4489        unsafe { self.align_to_mut() }
4490    }
4491
4492    /// Checks if the elements of this slice are sorted.
4493    ///
4494    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4495    /// slice yields exactly zero or one element, `true` is returned.
4496    ///
4497    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4498    /// implies that this function returns `false` if any two consecutive items are not
4499    /// comparable.
4500    ///
4501    /// # Examples
4502    ///
4503    /// ```
4504    /// let empty: [i32; 0] = [];
4505    ///
4506    /// assert!([1, 2, 2, 9].is_sorted());
4507    /// assert!(![1, 3, 2, 4].is_sorted());
4508    /// assert!([0].is_sorted());
4509    /// assert!(empty.is_sorted());
4510    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4511    /// ```
4512    #[inline]
4513    #[stable(feature = "is_sorted", since = "1.82.0")]
4514    #[must_use]
4515    pub fn is_sorted(&self) -> bool
4516    where
4517        T: PartialOrd,
4518    {
4519        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4520        const CHUNK_SIZE: usize = 33;
4521        if self.len() < CHUNK_SIZE {
4522            return self.windows(2).all(|w| w[0] <= w[1]);
4523        }
4524        let mut i = 0;
4525        // Check in chunks for autovectorization.
4526        while i < self.len() - CHUNK_SIZE {
4527            let chunk = &self[i..i + CHUNK_SIZE];
4528            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4529                return false;
4530            }
4531            // We need to ensure that chunk boundaries are also sorted.
4532            // Overlap the next chunk with the last element of our last chunk.
4533            i += CHUNK_SIZE - 1;
4534        }
4535        self[i..].windows(2).all(|w| w[0] <= w[1])
4536    }
4537
4538    /// Checks if the elements of this slice are sorted using the given comparator function.
4539    ///
4540    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4541    /// function to determine whether two elements are to be considered in sorted order.
4542    ///
4543    /// # Examples
4544    ///
4545    /// ```
4546    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4547    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4548    ///
4549    /// assert!([0].is_sorted_by(|a, b| true));
4550    /// assert!([0].is_sorted_by(|a, b| false));
4551    ///
4552    /// let empty: [i32; 0] = [];
4553    /// assert!(empty.is_sorted_by(|a, b| false));
4554    /// assert!(empty.is_sorted_by(|a, b| true));
4555    /// ```
4556    #[stable(feature = "is_sorted", since = "1.82.0")]
4557    #[must_use]
4558    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4559    where
4560        F: FnMut(&'a T, &'a T) -> bool,
4561    {
4562        self.array_windows().all(|[a, b]| compare(a, b))
4563    }
4564
4565    /// Checks if the elements of this slice are sorted using the given key extraction function.
4566    ///
4567    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4568    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4569    /// documentation for more information.
4570    ///
4571    /// [`is_sorted`]: slice::is_sorted
4572    ///
4573    /// # Examples
4574    ///
4575    /// ```
4576    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4577    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4578    /// ```
4579    #[inline]
4580    #[stable(feature = "is_sorted", since = "1.82.0")]
4581    #[must_use]
4582    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4583    where
4584        F: FnMut(&'a T) -> K,
4585        K: PartialOrd,
4586    {
4587        self.iter().is_sorted_by_key(f)
4588    }
4589
4590    /// Returns the index of the partition point according to the given predicate
4591    /// (the index of the first element of the second partition).
4592    ///
4593    /// The slice is assumed to be partitioned according to the given predicate.
4594    /// This means that all elements for which the predicate returns true are at the start of the slice
4595    /// and all elements for which the predicate returns false are at the end.
4596    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4597    /// (all odd numbers are at the start, all even at the end).
4598    ///
4599    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4600    /// as this method performs a kind of binary search.
4601    ///
4602    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4603    ///
4604    /// [`binary_search`]: slice::binary_search
4605    /// [`binary_search_by`]: slice::binary_search_by
4606    /// [`binary_search_by_key`]: slice::binary_search_by_key
4607    ///
4608    /// # Examples
4609    ///
4610    /// ```
4611    /// let v = [1, 2, 3, 3, 5, 6, 7];
4612    /// let i = v.partition_point(|&x| x < 5);
4613    ///
4614    /// assert_eq!(i, 4);
4615    /// assert!(v[..i].iter().all(|&x| x < 5));
4616    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4617    /// ```
4618    ///
4619    /// If all elements of the slice match the predicate, including if the slice
4620    /// is empty, then the length of the slice will be returned:
4621    ///
4622    /// ```
4623    /// let a = [2, 4, 8];
4624    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4625    /// let a: [i32; 0] = [];
4626    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4627    /// ```
4628    ///
4629    /// If you want to insert an item to a sorted vector, while maintaining
4630    /// sort order:
4631    ///
4632    /// ```
4633    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4634    /// let num = 42;
4635    /// let idx = s.partition_point(|&x| x <= num);
4636    /// s.insert(idx, num);
4637    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4638    /// ```
4639    #[stable(feature = "partition_point", since = "1.52.0")]
4640    #[must_use]
4641    pub fn partition_point<P>(&self, mut pred: P) -> usize
4642    where
4643        P: FnMut(&T) -> bool,
4644    {
4645        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4646    }
4647
4648    /// Removes the subslice corresponding to the given range
4649    /// and returns a reference to it.
4650    ///
4651    /// Returns `None` and does not modify the slice if the given
4652    /// range is out of bounds.
4653    ///
4654    /// Note that this method only accepts one-sided ranges such as
4655    /// `2..` or `..6`, but not `2..6`.
4656    ///
4657    /// # Examples
4658    ///
4659    /// Splitting off the first three elements of a slice:
4660    ///
4661    /// ```
4662    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4663    /// let mut first_three = slice.split_off(..3).unwrap();
4664    ///
4665    /// assert_eq!(slice, &['d']);
4666    /// assert_eq!(first_three, &['a', 'b', 'c']);
4667    /// ```
4668    ///
4669    /// Splitting off a slice starting with the third element:
4670    ///
4671    /// ```
4672    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4673    /// let mut tail = slice.split_off(2..).unwrap();
4674    ///
4675    /// assert_eq!(slice, &['a', 'b']);
4676    /// assert_eq!(tail, &['c', 'd']);
4677    /// ```
4678    ///
4679    /// Getting `None` when `range` is out of bounds:
4680    ///
4681    /// ```
4682    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4683    ///
4684    /// assert_eq!(None, slice.split_off(5..));
4685    /// assert_eq!(None, slice.split_off(..5));
4686    /// assert_eq!(None, slice.split_off(..=4));
4687    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4688    /// assert_eq!(Some(expected), slice.split_off(..4));
4689    /// ```
4690    #[inline]
4691    #[must_use = "method does not modify the slice if the range is out of bounds"]
4692    #[stable(feature = "slice_take", since = "1.87.0")]
4693    pub fn split_off<'a, R: OneSidedRange<usize>>(
4694        self: &mut &'a Self,
4695        range: R,
4696    ) -> Option<&'a Self> {
4697        let (direction, split_index) = split_point_of(range)?;
4698        if split_index > self.len() {
4699            return None;
4700        }
4701        let (front, back) = self.split_at(split_index);
4702        match direction {
4703            Direction::Front => {
4704                *self = back;
4705                Some(front)
4706            }
4707            Direction::Back => {
4708                *self = front;
4709                Some(back)
4710            }
4711        }
4712    }
4713
4714    /// Removes the subslice corresponding to the given range
4715    /// and returns a mutable reference to it.
4716    ///
4717    /// Returns `None` and does not modify the slice if the given
4718    /// range is out of bounds.
4719    ///
4720    /// Note that this method only accepts one-sided ranges such as
4721    /// `2..` or `..6`, but not `2..6`.
4722    ///
4723    /// # Examples
4724    ///
4725    /// Splitting off the first three elements of a slice:
4726    ///
4727    /// ```
4728    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4729    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4730    ///
4731    /// assert_eq!(slice, &mut ['d']);
4732    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4733    /// ```
4734    ///
4735    /// Splitting off a slice starting with the third element:
4736    ///
4737    /// ```
4738    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4739    /// let mut tail = slice.split_off_mut(2..).unwrap();
4740    ///
4741    /// assert_eq!(slice, &mut ['a', 'b']);
4742    /// assert_eq!(tail, &mut ['c', 'd']);
4743    /// ```
4744    ///
4745    /// Getting `None` when `range` is out of bounds:
4746    ///
4747    /// ```
4748    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4749    ///
4750    /// assert_eq!(None, slice.split_off_mut(5..));
4751    /// assert_eq!(None, slice.split_off_mut(..5));
4752    /// assert_eq!(None, slice.split_off_mut(..=4));
4753    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4754    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4755    /// ```
4756    #[inline]
4757    #[must_use = "method does not modify the slice if the range is out of bounds"]
4758    #[stable(feature = "slice_take", since = "1.87.0")]
4759    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4760        self: &mut &'a mut Self,
4761        range: R,
4762    ) -> Option<&'a mut Self> {
4763        let (direction, split_index) = split_point_of(range)?;
4764        if split_index > self.len() {
4765            return None;
4766        }
4767        let (front, back) = mem::take(self).split_at_mut(split_index);
4768        match direction {
4769            Direction::Front => {
4770                *self = back;
4771                Some(front)
4772            }
4773            Direction::Back => {
4774                *self = front;
4775                Some(back)
4776            }
4777        }
4778    }
4779
4780    /// Removes the first element of the slice and returns a reference
4781    /// to it.
4782    ///
4783    /// Returns `None` if the slice is empty.
4784    ///
4785    /// # Examples
4786    ///
4787    /// ```
4788    /// let mut slice: &[_] = &['a', 'b', 'c'];
4789    /// let first = slice.split_off_first().unwrap();
4790    ///
4791    /// assert_eq!(slice, &['b', 'c']);
4792    /// assert_eq!(first, &'a');
4793    /// ```
4794    #[inline]
4795    #[stable(feature = "slice_take", since = "1.87.0")]
4796    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4797    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4798        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4799        let Some((first, rem)) = self.split_first() else { return None };
4800        *self = rem;
4801        Some(first)
4802    }
4803
4804    /// Removes the first element of the slice and returns a mutable
4805    /// reference to it.
4806    ///
4807    /// Returns `None` if the slice is empty.
4808    ///
4809    /// # Examples
4810    ///
4811    /// ```
4812    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4813    /// let first = slice.split_off_first_mut().unwrap();
4814    /// *first = 'd';
4815    ///
4816    /// assert_eq!(slice, &['b', 'c']);
4817    /// assert_eq!(first, &'d');
4818    /// ```
4819    #[inline]
4820    #[stable(feature = "slice_take", since = "1.87.0")]
4821    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4822    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4823        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4824        // Original: `mem::take(self).split_first_mut()?`
4825        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4826        *self = rem;
4827        Some(first)
4828    }
4829
4830    /// Removes the last element of the slice and returns a reference
4831    /// to it.
4832    ///
4833    /// Returns `None` if the slice is empty.
4834    ///
4835    /// # Examples
4836    ///
4837    /// ```
4838    /// let mut slice: &[_] = &['a', 'b', 'c'];
4839    /// let last = slice.split_off_last().unwrap();
4840    ///
4841    /// assert_eq!(slice, &['a', 'b']);
4842    /// assert_eq!(last, &'c');
4843    /// ```
4844    #[inline]
4845    #[stable(feature = "slice_take", since = "1.87.0")]
4846    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4847    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4848        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4849        let Some((last, rem)) = self.split_last() else { return None };
4850        *self = rem;
4851        Some(last)
4852    }
4853
4854    /// Removes the last element of the slice and returns a mutable
4855    /// reference to it.
4856    ///
4857    /// Returns `None` if the slice is empty.
4858    ///
4859    /// # Examples
4860    ///
4861    /// ```
4862    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4863    /// let last = slice.split_off_last_mut().unwrap();
4864    /// *last = 'd';
4865    ///
4866    /// assert_eq!(slice, &['a', 'b']);
4867    /// assert_eq!(last, &'d');
4868    /// ```
4869    #[inline]
4870    #[stable(feature = "slice_take", since = "1.87.0")]
4871    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4872    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4873        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4874        // Original: `mem::take(self).split_last_mut()?`
4875        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4876        *self = rem;
4877        Some(last)
4878    }
4879
4880    /// Returns mutable references to many indices at once, without doing any checks.
4881    ///
4882    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4883    /// that this method takes an array, so all indices must be of the same type.
4884    /// If passed an array of `usize`s this method gives back an array of mutable references
4885    /// to single elements, while if passed an array of ranges it gives back an array of
4886    /// mutable references to slices.
4887    ///
4888    /// For a safe alternative see [`get_disjoint_mut`].
4889    ///
4890    /// # Safety
4891    ///
4892    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4893    /// even if the resulting references are not used.
4894    ///
4895    /// # Examples
4896    ///
4897    /// ```
4898    /// let x = &mut [1, 2, 4];
4899    ///
4900    /// unsafe {
4901    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4902    ///     *a *= 10;
4903    ///     *b *= 100;
4904    /// }
4905    /// assert_eq!(x, &[10, 2, 400]);
4906    ///
4907    /// unsafe {
4908    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4909    ///     a[0] = 8;
4910    ///     b[0] = 88;
4911    ///     b[1] = 888;
4912    /// }
4913    /// assert_eq!(x, &[8, 88, 888]);
4914    ///
4915    /// unsafe {
4916    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4917    ///     a[0] = 11;
4918    ///     a[1] = 111;
4919    ///     b[0] = 1;
4920    /// }
4921    /// assert_eq!(x, &[1, 11, 111]);
4922    /// ```
4923    ///
4924    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4925    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4926    #[stable(feature = "get_many_mut", since = "1.86.0")]
4927    #[inline]
4928    #[track_caller]
4929    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4930        &mut self,
4931        indices: [I; N],
4932    ) -> [&mut I::Output; N]
4933    where
4934        I: GetDisjointMutIndex + SliceIndex<Self>,
4935    {
4936        // NB: This implementation is written as it is because any variation of
4937        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4938        // or generate worse code otherwise. This is also why we need to go
4939        // through a raw pointer here.
4940        let slice: *mut [T] = self;
4941        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4942        let arr_ptr = arr.as_mut_ptr();
4943
4944        // SAFETY: We expect `indices` to contain disjunct values that are
4945        // in bounds of `self`.
4946        unsafe {
4947            for i in 0..N {
4948                let idx = indices.get_unchecked(i).clone();
4949                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4950            }
4951            arr.assume_init()
4952        }
4953    }
4954
4955    /// Returns mutable references to many indices at once.
4956    ///
4957    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4958    /// that this method takes an array, so all indices must be of the same type.
4959    /// If passed an array of `usize`s this method gives back an array of mutable references
4960    /// to single elements, while if passed an array of ranges it gives back an array of
4961    /// mutable references to slices.
4962    ///
4963    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4964    /// An empty range is not considered to overlap if it is located at the beginning or at
4965    /// the end of another range, but is considered to overlap if it is located in the middle.
4966    ///
4967    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4968    /// when passing many indices.
4969    ///
4970    /// # Examples
4971    ///
4972    /// ```
4973    /// let v = &mut [1, 2, 3];
4974    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4975    ///     *a = 413;
4976    ///     *b = 612;
4977    /// }
4978    /// assert_eq!(v, &[413, 2, 612]);
4979    ///
4980    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4981    ///     a[0] = 8;
4982    ///     b[0] = 88;
4983    ///     b[1] = 888;
4984    /// }
4985    /// assert_eq!(v, &[8, 88, 888]);
4986    ///
4987    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4988    ///     a[0] = 11;
4989    ///     a[1] = 111;
4990    ///     b[0] = 1;
4991    /// }
4992    /// assert_eq!(v, &[1, 11, 111]);
4993    /// ```
4994    #[stable(feature = "get_many_mut", since = "1.86.0")]
4995    #[inline]
4996    pub fn get_disjoint_mut<I, const N: usize>(
4997        &mut self,
4998        indices: [I; N],
4999    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
5000    where
5001        I: GetDisjointMutIndex + SliceIndex<Self>,
5002    {
5003        get_disjoint_check_valid(&indices, self.len())?;
5004        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
5005        // are disjunct and in bounds.
5006        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
5007    }
5008
5009    /// Returns the index that an element reference points to.
5010    ///
5011    /// Returns `None` if `element` does not point to the start of an element within the slice.
5012    ///
5013    /// This method is useful for extending slice iterators like [`slice::split`].
5014    ///
5015    /// Note that this uses pointer arithmetic and **does not compare elements**.
5016    /// To find the index of an element via comparison, use
5017    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
5018    ///
5019    /// # Panics
5020    /// Panics if `T` is zero-sized.
5021    ///
5022    /// # Examples
5023    /// Basic usage:
5024    /// ```
5025    /// let nums: &[u32] = &[1, 7, 1, 1];
5026    /// let num = &nums[2];
5027    ///
5028    /// assert_eq!(num, &1);
5029    /// assert_eq!(nums.element_offset(num), Some(2));
5030    /// ```
5031    /// Returning `None` with an unaligned element:
5032    /// ```
5033    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
5034    /// let flat_arr: &[u32] = arr.as_flattened();
5035    ///
5036    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
5037    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
5038    ///
5039    /// assert_eq!(ok_elm, &[0, 1]);
5040    /// assert_eq!(weird_elm, &[1, 2]);
5041    ///
5042    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
5043    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
5044    /// ```
5045    #[must_use]
5046    #[stable(feature = "element_offset", since = "CURRENT_RUSTC_VERSION")]
5047    pub fn element_offset(&self, element: &T) -> Option<usize> {
5048        if T::IS_ZST {
5049            panic!("elements are zero-sized");
5050        }
5051
5052        let self_start = self.as_ptr().addr();
5053        let elem_start = ptr::from_ref(element).addr();
5054
5055        let byte_offset = elem_start.wrapping_sub(self_start);
5056
5057        if !byte_offset.is_multiple_of(size_of::<T>()) {
5058            return None;
5059        }
5060
5061        let offset = byte_offset / size_of::<T>();
5062
5063        if offset < self.len() { Some(offset) } else { None }
5064    }
5065
5066    /// Returns the range of indices that a subslice points to.
5067    ///
5068    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
5069    /// elements in the slice.
5070    ///
5071    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
5072    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
5073    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
5074    ///
5075    /// This method is useful for extending slice iterators like [`slice::split`].
5076    ///
5077    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
5078    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
5079    ///
5080    /// # Panics
5081    /// Panics if `T` is zero-sized.
5082    ///
5083    /// # Examples
5084    /// Basic usage:
5085    /// ```
5086    /// #![feature(substr_range)]
5087    ///
5088    /// let nums = &[0, 5, 10, 0, 0, 5];
5089    ///
5090    /// let mut iter = nums
5091    ///     .split(|t| *t == 0)
5092    ///     .map(|n| nums.subslice_range(n).unwrap());
5093    ///
5094    /// assert_eq!(iter.next(), Some(0..0));
5095    /// assert_eq!(iter.next(), Some(1..3));
5096    /// assert_eq!(iter.next(), Some(4..4));
5097    /// assert_eq!(iter.next(), Some(5..6));
5098    /// ```
5099    #[must_use]
5100    #[unstable(feature = "substr_range", issue = "126769")]
5101    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
5102        if T::IS_ZST {
5103            panic!("elements are zero-sized");
5104        }
5105
5106        let self_start = self.as_ptr().addr();
5107        let subslice_start = subslice.as_ptr().addr();
5108
5109        let byte_start = subslice_start.wrapping_sub(self_start);
5110
5111        if !byte_start.is_multiple_of(size_of::<T>()) {
5112            return None;
5113        }
5114
5115        let start = byte_start / size_of::<T>();
5116        let end = start.wrapping_add(subslice.len());
5117
5118        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
5119    }
5120
5121    /// Returns the same slice `&[T]`.
5122    ///
5123    /// This method is redundant when used directly on `&[T]`, but
5124    /// it helps dereferencing other "container" types to slices,
5125    /// for example `Box<[T]>` or `Arc<[T]>`.
5126    #[inline]
5127    #[unstable(feature = "str_as_str", issue = "130366")]
5128    pub const fn as_slice(&self) -> &[T] {
5129        self
5130    }
5131
5132    /// Returns the same slice `&mut [T]`.
5133    ///
5134    /// This method is redundant when used directly on `&mut [T]`, but
5135    /// it helps dereferencing other "container" types to slices,
5136    /// for example `Box<[T]>` or `MutexGuard<[T]>`.
5137    #[inline]
5138    #[unstable(feature = "str_as_str", issue = "130366")]
5139    pub const fn as_mut_slice(&mut self) -> &mut [T] {
5140        self
5141    }
5142}
5143
5144impl<T> [MaybeUninit<T>] {
5145    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
5146    /// another type, ensuring alignment of the types is maintained.
5147    ///
5148    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
5149    /// guarantees as that method.
5150    ///
5151    /// # Examples
5152    ///
5153    /// ```
5154    /// #![feature(align_to_uninit_mut)]
5155    /// use std::mem::MaybeUninit;
5156    ///
5157    /// pub struct BumpAllocator<'scope> {
5158    ///     memory: &'scope mut [MaybeUninit<u8>],
5159    /// }
5160    ///
5161    /// impl<'scope> BumpAllocator<'scope> {
5162    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
5163    ///         Self { memory }
5164    ///     }
5165    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
5166    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
5167    ///         let prefix = self.memory.split_off_mut(..first_end)?;
5168    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
5169    ///     }
5170    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
5171    ///         let uninit = self.try_alloc_uninit()?;
5172    ///         Some(uninit.write(value))
5173    ///     }
5174    /// }
5175    ///
5176    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
5177    /// let mut allocator = BumpAllocator::new(&mut memory);
5178    /// let v = allocator.try_alloc_u32(42);
5179    /// assert_eq!(v, Some(&mut 42));
5180    /// ```
5181    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
5182    #[inline]
5183    #[must_use]
5184    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
5185        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
5186        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
5187        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
5188        // any values are valid, so this operation is safe.
5189        unsafe { self.align_to_mut() }
5190    }
5191}
5192
5193impl<T, const N: usize> [[T; N]] {
5194    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
5195    ///
5196    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
5197    ///
5198    /// [`as_chunks`]: slice::as_chunks
5199    /// [`as_rchunks`]: slice::as_rchunks
5200    ///
5201    /// # Panics
5202    ///
5203    /// This panics if the length of the resulting slice would overflow a `usize`.
5204    ///
5205    /// This is only possible when flattening a slice of arrays of zero-sized
5206    /// types, and thus tends to be irrelevant in practice. If
5207    /// `size_of::<T>() > 0`, this will never panic.
5208    ///
5209    /// # Examples
5210    ///
5211    /// ```
5212    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
5213    ///
5214    /// assert_eq!(
5215    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
5216    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
5217    /// );
5218    ///
5219    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
5220    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
5221    ///
5222    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
5223    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
5224    /// ```
5225    #[stable(feature = "slice_flatten", since = "1.80.0")]
5226    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5227    pub const fn as_flattened(&self) -> &[T] {
5228        let len = if T::IS_ZST {
5229            self.len().checked_mul(N).expect("slice len overflow")
5230        } else {
5231            // SAFETY: `self.len() * N` cannot overflow because `self` is
5232            // already in the address space.
5233            unsafe { self.len().unchecked_mul(N) }
5234        };
5235        // SAFETY: `[T]` is layout-identical to `[T; N]`
5236        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5237    }
5238
5239    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5240    ///
5241    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5242    ///
5243    /// [`as_chunks_mut`]: slice::as_chunks_mut
5244    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5245    ///
5246    /// # Panics
5247    ///
5248    /// This panics if the length of the resulting slice would overflow a `usize`.
5249    ///
5250    /// This is only possible when flattening a slice of arrays of zero-sized
5251    /// types, and thus tends to be irrelevant in practice. If
5252    /// `size_of::<T>() > 0`, this will never panic.
5253    ///
5254    /// # Examples
5255    ///
5256    /// ```
5257    /// fn add_5_to_all(slice: &mut [i32]) {
5258    ///     for i in slice {
5259    ///         *i += 5;
5260    ///     }
5261    /// }
5262    ///
5263    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5264    /// add_5_to_all(array.as_flattened_mut());
5265    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5266    /// ```
5267    #[stable(feature = "slice_flatten", since = "1.80.0")]
5268    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5269    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5270        let len = if T::IS_ZST {
5271            self.len().checked_mul(N).expect("slice len overflow")
5272        } else {
5273            // SAFETY: `self.len() * N` cannot overflow because `self` is
5274            // already in the address space.
5275            unsafe { self.len().unchecked_mul(N) }
5276        };
5277        // SAFETY: `[T]` is layout-identical to `[T; N]`
5278        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5279    }
5280}
5281
5282impl [f32] {
5283    /// Sorts the slice of floats.
5284    ///
5285    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5286    /// the ordering defined by [`f32::total_cmp`].
5287    ///
5288    /// # Current implementation
5289    ///
5290    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5291    ///
5292    /// # Examples
5293    ///
5294    /// ```
5295    /// #![feature(sort_floats)]
5296    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5297    ///
5298    /// v.sort_floats();
5299    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5300    /// assert_eq!(&v[..8], &sorted[..8]);
5301    /// assert!(v[8].is_nan());
5302    /// ```
5303    #[unstable(feature = "sort_floats", issue = "93396")]
5304    #[inline]
5305    pub fn sort_floats(&mut self) {
5306        self.sort_unstable_by(f32::total_cmp);
5307    }
5308}
5309
5310impl [f64] {
5311    /// Sorts the slice of floats.
5312    ///
5313    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5314    /// the ordering defined by [`f64::total_cmp`].
5315    ///
5316    /// # Current implementation
5317    ///
5318    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5319    ///
5320    /// # Examples
5321    ///
5322    /// ```
5323    /// #![feature(sort_floats)]
5324    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5325    ///
5326    /// v.sort_floats();
5327    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5328    /// assert_eq!(&v[..8], &sorted[..8]);
5329    /// assert!(v[8].is_nan());
5330    /// ```
5331    #[unstable(feature = "sort_floats", issue = "93396")]
5332    #[inline]
5333    pub fn sort_floats(&mut self) {
5334        self.sort_unstable_by(f64::total_cmp);
5335    }
5336}
5337
5338/// Copies `src` to `dest`.
5339///
5340/// # Safety
5341/// `T` must implement one of `Copy` or `TrivialClone`.
5342#[track_caller]
5343const unsafe fn copy_from_slice_impl<T: Clone>(dest: &mut [T], src: &[T]) {
5344    // The panic code path was put into a cold function to not bloat the
5345    // call site.
5346    #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
5347    #[cfg_attr(panic = "immediate-abort", inline)]
5348    #[track_caller]
5349    const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
5350        const_panic!(
5351            "copy_from_slice: source slice length does not match destination slice length",
5352            "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
5353            src_len: usize,
5354            dst_len: usize,
5355        )
5356    }
5357
5358    if dest.len() != src.len() {
5359        len_mismatch_fail(dest.len(), src.len());
5360    }
5361
5362    // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
5363    // checked to have the same length. The slices cannot overlap because
5364    // mutable references are exclusive.
5365    unsafe {
5366        ptr::copy_nonoverlapping(src.as_ptr(), dest.as_mut_ptr(), dest.len());
5367    }
5368}
5369
5370trait CloneFromSpec<T> {
5371    fn spec_clone_from(&mut self, src: &[T]);
5372}
5373
5374impl<T> CloneFromSpec<T> for [T]
5375where
5376    T: Clone,
5377{
5378    #[track_caller]
5379    default fn spec_clone_from(&mut self, src: &[T]) {
5380        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5381        // NOTE: We need to explicitly slice them to the same length
5382        // to make it easier for the optimizer to elide bounds checking.
5383        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5384        let len = self.len();
5385        let src = &src[..len];
5386        for i in 0..len {
5387            self[i].clone_from(&src[i]);
5388        }
5389    }
5390}
5391
5392impl<T> CloneFromSpec<T> for [T]
5393where
5394    T: TrivialClone,
5395{
5396    #[track_caller]
5397    fn spec_clone_from(&mut self, src: &[T]) {
5398        // SAFETY: `T` implements `TrivialClone`.
5399        unsafe {
5400            copy_from_slice_impl(self, src);
5401        }
5402    }
5403}
5404
5405#[stable(feature = "rust1", since = "1.0.0")]
5406#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5407impl<T> const Default for &[T] {
5408    /// Creates an empty slice.
5409    fn default() -> Self {
5410        &[]
5411    }
5412}
5413
5414#[stable(feature = "mut_slice_default", since = "1.5.0")]
5415#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5416impl<T> const Default for &mut [T] {
5417    /// Creates a mutable empty slice.
5418    fn default() -> Self {
5419        &mut []
5420    }
5421}
5422
5423#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5424/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5425/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5426/// `str`) to slices, and then this trait will be replaced or abolished.
5427pub trait SlicePattern {
5428    /// The element type of the slice being matched on.
5429    type Item;
5430
5431    /// Currently, the consumers of `SlicePattern` need a slice.
5432    fn as_slice(&self) -> &[Self::Item];
5433}
5434
5435#[stable(feature = "slice_strip", since = "1.51.0")]
5436impl<T> SlicePattern for [T] {
5437    type Item = T;
5438
5439    #[inline]
5440    fn as_slice(&self) -> &[Self::Item] {
5441        self
5442    }
5443}
5444
5445#[stable(feature = "slice_strip", since = "1.51.0")]
5446impl<T, const N: usize> SlicePattern for [T; N] {
5447    type Item = T;
5448
5449    #[inline]
5450    fn as_slice(&self) -> &[Self::Item] {
5451        self
5452    }
5453}
5454
5455/// This checks every index against each other, and against `len`.
5456///
5457/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5458/// comparison operations.
5459#[inline]
5460fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5461    indices: &[I; N],
5462    len: usize,
5463) -> Result<(), GetDisjointMutError> {
5464    // NB: The optimizer should inline the loops into a sequence
5465    // of instructions without additional branching.
5466    for (i, idx) in indices.iter().enumerate() {
5467        if !idx.is_in_bounds(len) {
5468            return Err(GetDisjointMutError::IndexOutOfBounds);
5469        }
5470        for idx2 in &indices[..i] {
5471            if idx.is_overlapping(idx2) {
5472                return Err(GetDisjointMutError::OverlappingIndices);
5473            }
5474        }
5475    }
5476    Ok(())
5477}
5478
5479/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5480///
5481/// It indicates one of two possible errors:
5482/// - An index is out-of-bounds.
5483/// - The same index appeared multiple times in the array
5484///   (or different but overlapping indices when ranges are provided).
5485///
5486/// # Examples
5487///
5488/// ```
5489/// use std::slice::GetDisjointMutError;
5490///
5491/// let v = &mut [1, 2, 3];
5492/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5493/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5494/// ```
5495#[stable(feature = "get_many_mut", since = "1.86.0")]
5496#[derive(Debug, Clone, PartialEq, Eq)]
5497pub enum GetDisjointMutError {
5498    /// An index provided was out-of-bounds for the slice.
5499    IndexOutOfBounds,
5500    /// Two indices provided were overlapping.
5501    OverlappingIndices,
5502}
5503
5504#[stable(feature = "get_many_mut", since = "1.86.0")]
5505impl fmt::Display for GetDisjointMutError {
5506    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5507        let msg = match self {
5508            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5509            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5510        };
5511        fmt::Display::fmt(msg, f)
5512    }
5513}
5514
5515mod private_get_disjoint_mut_index {
5516    use super::{Range, RangeInclusive, range};
5517
5518    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5519    pub trait Sealed {}
5520
5521    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5522    impl Sealed for usize {}
5523    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5524    impl Sealed for Range<usize> {}
5525    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5526    impl Sealed for RangeInclusive<usize> {}
5527    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5528    impl Sealed for range::Range<usize> {}
5529    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5530    impl Sealed for range::RangeInclusive<usize> {}
5531}
5532
5533/// A helper trait for `<[T]>::get_disjoint_mut()`.
5534///
5535/// # Safety
5536///
5537/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5538/// it must be safe to index the slice with the indices.
5539#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5540pub unsafe trait GetDisjointMutIndex:
5541    Clone + private_get_disjoint_mut_index::Sealed
5542{
5543    /// Returns `true` if `self` is in bounds for `len` slice elements.
5544    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5545    fn is_in_bounds(&self, len: usize) -> bool;
5546
5547    /// Returns `true` if `self` overlaps with `other`.
5548    ///
5549    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5550    /// but do consider them to overlap in the middle.
5551    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5552    fn is_overlapping(&self, other: &Self) -> bool;
5553}
5554
5555#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5556// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5557unsafe impl GetDisjointMutIndex for usize {
5558    #[inline]
5559    fn is_in_bounds(&self, len: usize) -> bool {
5560        *self < len
5561    }
5562
5563    #[inline]
5564    fn is_overlapping(&self, other: &Self) -> bool {
5565        *self == *other
5566    }
5567}
5568
5569#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5570// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5571unsafe impl GetDisjointMutIndex for Range<usize> {
5572    #[inline]
5573    fn is_in_bounds(&self, len: usize) -> bool {
5574        (self.start <= self.end) & (self.end <= len)
5575    }
5576
5577    #[inline]
5578    fn is_overlapping(&self, other: &Self) -> bool {
5579        (self.start < other.end) & (other.start < self.end)
5580    }
5581}
5582
5583#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5584// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5585unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5586    #[inline]
5587    fn is_in_bounds(&self, len: usize) -> bool {
5588        (self.start <= self.end) & (self.end < len)
5589    }
5590
5591    #[inline]
5592    fn is_overlapping(&self, other: &Self) -> bool {
5593        (self.start <= other.end) & (other.start <= self.end)
5594    }
5595}
5596
5597#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5598// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5599unsafe impl GetDisjointMutIndex for range::Range<usize> {
5600    #[inline]
5601    fn is_in_bounds(&self, len: usize) -> bool {
5602        Range::from(*self).is_in_bounds(len)
5603    }
5604
5605    #[inline]
5606    fn is_overlapping(&self, other: &Self) -> bool {
5607        Range::from(*self).is_overlapping(&Range::from(*other))
5608    }
5609}
5610
5611#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5612// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5613unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5614    #[inline]
5615    fn is_in_bounds(&self, len: usize) -> bool {
5616        RangeInclusive::from(*self).is_in_bounds(len)
5617    }
5618
5619    #[inline]
5620    fn is_overlapping(&self, other: &Self) -> bool {
5621        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5622    }
5623}