core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::clone::TrivialClone;
10use crate::cmp::Ordering::{self, Equal, Greater, Less};
11use crate::intrinsics::{exact_div, unchecked_sub};
12use crate::marker::Destruct;
13use crate::mem::{self, MaybeUninit, SizedTypeProperties};
14use crate::num::NonZero;
15use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
16use crate::panic::const_panic;
17use crate::simd::{self, Simd};
18use crate::ub_checks::assert_unsafe_precondition;
19use crate::{fmt, hint, ptr, range, slice};
20
21#[unstable(
22    feature = "slice_internals",
23    issue = "none",
24    reason = "exposed from core to be reused in std; use the memchr crate"
25)]
26#[doc(hidden)]
27/// Pure Rust memchr implementation, taken from rust-memchr
28pub mod memchr;
29
30#[unstable(
31    feature = "slice_internals",
32    issue = "none",
33    reason = "exposed from core to be reused in std;"
34)]
35#[doc(hidden)]
36pub mod sort;
37
38mod ascii;
39mod cmp;
40pub(crate) mod index;
41mod iter;
42mod raw;
43mod rotate;
44mod specialize;
45
46#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
47pub use ascii::EscapeAscii;
48#[unstable(feature = "str_internals", issue = "none")]
49#[doc(hidden)]
50pub use ascii::is_ascii_simple;
51#[stable(feature = "slice_get_slice", since = "1.28.0")]
52pub use index::SliceIndex;
53#[unstable(feature = "slice_range", issue = "76393")]
54pub use index::{range, try_range};
55#[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
56pub use iter::ArrayWindows;
57#[stable(feature = "slice_group_by", since = "1.77.0")]
58pub use iter::{ChunkBy, ChunkByMut};
59#[stable(feature = "rust1", since = "1.0.0")]
60pub use iter::{Chunks, ChunksMut, Windows};
61#[stable(feature = "chunks_exact", since = "1.31.0")]
62pub use iter::{ChunksExact, ChunksExactMut};
63#[stable(feature = "rust1", since = "1.0.0")]
64pub use iter::{Iter, IterMut};
65#[stable(feature = "rchunks", since = "1.31.0")]
66pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
67#[stable(feature = "slice_rsplit", since = "1.27.0")]
68pub use iter::{RSplit, RSplitMut};
69#[stable(feature = "rust1", since = "1.0.0")]
70pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
71#[stable(feature = "split_inclusive", since = "1.51.0")]
72pub use iter::{SplitInclusive, SplitInclusiveMut};
73#[stable(feature = "from_ref", since = "1.28.0")]
74pub use raw::{from_mut, from_ref};
75#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
76pub use raw::{from_mut_ptr_range, from_ptr_range};
77#[stable(feature = "rust1", since = "1.0.0")]
78pub use raw::{from_raw_parts, from_raw_parts_mut};
79
80/// Calculates the direction and split point of a one-sided range.
81///
82/// This is a helper function for `split_off` and `split_off_mut` that returns
83/// the direction of the split (front or back) as well as the index at
84/// which to split. Returns `None` if the split index would overflow.
85#[inline]
86fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
87    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
88
89    Some(match range.bound() {
90        (StartInclusive, i) => (Direction::Back, i),
91        (End, i) => (Direction::Front, i),
92        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
93    })
94}
95
96enum Direction {
97    Front,
98    Back,
99}
100
101impl<T> [T] {
102    /// Returns the number of elements in the slice.
103    ///
104    /// # Examples
105    ///
106    /// ```
107    /// let a = [1, 2, 3];
108    /// assert_eq!(a.len(), 3);
109    /// ```
110    #[lang = "slice_len_fn"]
111    #[stable(feature = "rust1", since = "1.0.0")]
112    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
113    #[rustc_no_implicit_autorefs]
114    #[inline]
115    #[must_use]
116    pub const fn len(&self) -> usize {
117        ptr::metadata(self)
118    }
119
120    /// Returns `true` if the slice has a length of 0.
121    ///
122    /// # Examples
123    ///
124    /// ```
125    /// let a = [1, 2, 3];
126    /// assert!(!a.is_empty());
127    ///
128    /// let b: &[i32] = &[];
129    /// assert!(b.is_empty());
130    /// ```
131    #[stable(feature = "rust1", since = "1.0.0")]
132    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
133    #[rustc_no_implicit_autorefs]
134    #[inline]
135    #[must_use]
136    pub const fn is_empty(&self) -> bool {
137        self.len() == 0
138    }
139
140    /// Returns the first element of the slice, or `None` if it is empty.
141    ///
142    /// # Examples
143    ///
144    /// ```
145    /// let v = [10, 40, 30];
146    /// assert_eq!(Some(&10), v.first());
147    ///
148    /// let w: &[i32] = &[];
149    /// assert_eq!(None, w.first());
150    /// ```
151    #[stable(feature = "rust1", since = "1.0.0")]
152    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
153    #[inline]
154    #[must_use]
155    pub const fn first(&self) -> Option<&T> {
156        if let [first, ..] = self { Some(first) } else { None }
157    }
158
159    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
160    ///
161    /// # Examples
162    ///
163    /// ```
164    /// let x = &mut [0, 1, 2];
165    ///
166    /// if let Some(first) = x.first_mut() {
167    ///     *first = 5;
168    /// }
169    /// assert_eq!(x, &[5, 1, 2]);
170    ///
171    /// let y: &mut [i32] = &mut [];
172    /// assert_eq!(None, y.first_mut());
173    /// ```
174    #[stable(feature = "rust1", since = "1.0.0")]
175    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
176    #[inline]
177    #[must_use]
178    pub const fn first_mut(&mut self) -> Option<&mut T> {
179        if let [first, ..] = self { Some(first) } else { None }
180    }
181
182    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
183    ///
184    /// # Examples
185    ///
186    /// ```
187    /// let x = &[0, 1, 2];
188    ///
189    /// if let Some((first, elements)) = x.split_first() {
190    ///     assert_eq!(first, &0);
191    ///     assert_eq!(elements, &[1, 2]);
192    /// }
193    /// ```
194    #[stable(feature = "slice_splits", since = "1.5.0")]
195    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
196    #[inline]
197    #[must_use]
198    pub const fn split_first(&self) -> Option<(&T, &[T])> {
199        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
200    }
201
202    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
203    ///
204    /// # Examples
205    ///
206    /// ```
207    /// let x = &mut [0, 1, 2];
208    ///
209    /// if let Some((first, elements)) = x.split_first_mut() {
210    ///     *first = 3;
211    ///     elements[0] = 4;
212    ///     elements[1] = 5;
213    /// }
214    /// assert_eq!(x, &[3, 4, 5]);
215    /// ```
216    #[stable(feature = "slice_splits", since = "1.5.0")]
217    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
218    #[inline]
219    #[must_use]
220    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
221        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
222    }
223
224    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
225    ///
226    /// # Examples
227    ///
228    /// ```
229    /// let x = &[0, 1, 2];
230    ///
231    /// if let Some((last, elements)) = x.split_last() {
232    ///     assert_eq!(last, &2);
233    ///     assert_eq!(elements, &[0, 1]);
234    /// }
235    /// ```
236    #[stable(feature = "slice_splits", since = "1.5.0")]
237    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
238    #[inline]
239    #[must_use]
240    pub const fn split_last(&self) -> Option<(&T, &[T])> {
241        if let [init @ .., last] = self { Some((last, init)) } else { None }
242    }
243
244    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
245    ///
246    /// # Examples
247    ///
248    /// ```
249    /// let x = &mut [0, 1, 2];
250    ///
251    /// if let Some((last, elements)) = x.split_last_mut() {
252    ///     *last = 3;
253    ///     elements[0] = 4;
254    ///     elements[1] = 5;
255    /// }
256    /// assert_eq!(x, &[4, 5, 3]);
257    /// ```
258    #[stable(feature = "slice_splits", since = "1.5.0")]
259    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
260    #[inline]
261    #[must_use]
262    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
263        if let [init @ .., last] = self { Some((last, init)) } else { None }
264    }
265
266    /// Returns the last element of the slice, or `None` if it is empty.
267    ///
268    /// # Examples
269    ///
270    /// ```
271    /// let v = [10, 40, 30];
272    /// assert_eq!(Some(&30), v.last());
273    ///
274    /// let w: &[i32] = &[];
275    /// assert_eq!(None, w.last());
276    /// ```
277    #[stable(feature = "rust1", since = "1.0.0")]
278    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
279    #[inline]
280    #[must_use]
281    pub const fn last(&self) -> Option<&T> {
282        if let [.., last] = self { Some(last) } else { None }
283    }
284
285    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
286    ///
287    /// # Examples
288    ///
289    /// ```
290    /// let x = &mut [0, 1, 2];
291    ///
292    /// if let Some(last) = x.last_mut() {
293    ///     *last = 10;
294    /// }
295    /// assert_eq!(x, &[0, 1, 10]);
296    ///
297    /// let y: &mut [i32] = &mut [];
298    /// assert_eq!(None, y.last_mut());
299    /// ```
300    #[stable(feature = "rust1", since = "1.0.0")]
301    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
302    #[inline]
303    #[must_use]
304    pub const fn last_mut(&mut self) -> Option<&mut T> {
305        if let [.., last] = self { Some(last) } else { None }
306    }
307
308    /// Returns an array reference to the first `N` items in the slice.
309    ///
310    /// If the slice is not at least `N` in length, this will return `None`.
311    ///
312    /// # Examples
313    ///
314    /// ```
315    /// let u = [10, 40, 30];
316    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
317    ///
318    /// let v: &[i32] = &[10];
319    /// assert_eq!(None, v.first_chunk::<2>());
320    ///
321    /// let w: &[i32] = &[];
322    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
323    /// ```
324    #[inline]
325    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
326    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
327    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
328        if self.len() < N {
329            None
330        } else {
331            // SAFETY: We explicitly check for the correct number of elements,
332            //   and do not let the reference outlive the slice.
333            Some(unsafe { &*(self.as_ptr().cast_array()) })
334        }
335    }
336
337    /// Returns a mutable array reference to the first `N` items in the slice.
338    ///
339    /// If the slice is not at least `N` in length, this will return `None`.
340    ///
341    /// # Examples
342    ///
343    /// ```
344    /// let x = &mut [0, 1, 2];
345    ///
346    /// if let Some(first) = x.first_chunk_mut::<2>() {
347    ///     first[0] = 5;
348    ///     first[1] = 4;
349    /// }
350    /// assert_eq!(x, &[5, 4, 2]);
351    ///
352    /// assert_eq!(None, x.first_chunk_mut::<4>());
353    /// ```
354    #[inline]
355    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
356    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
357    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
358        if self.len() < N {
359            None
360        } else {
361            // SAFETY: We explicitly check for the correct number of elements,
362            //   do not let the reference outlive the slice,
363            //   and require exclusive access to the entire slice to mutate the chunk.
364            Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
365        }
366    }
367
368    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
369    ///
370    /// If the slice is not at least `N` in length, this will return `None`.
371    ///
372    /// # Examples
373    ///
374    /// ```
375    /// let x = &[0, 1, 2];
376    ///
377    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
378    ///     assert_eq!(first, &[0, 1]);
379    ///     assert_eq!(elements, &[2]);
380    /// }
381    ///
382    /// assert_eq!(None, x.split_first_chunk::<4>());
383    /// ```
384    #[inline]
385    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
387    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
388        let Some((first, tail)) = self.split_at_checked(N) else { return None };
389
390        // SAFETY: We explicitly check for the correct number of elements,
391        //   and do not let the references outlive the slice.
392        Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
393    }
394
395    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
396    /// slice.
397    ///
398    /// If the slice is not at least `N` in length, this will return `None`.
399    ///
400    /// # Examples
401    ///
402    /// ```
403    /// let x = &mut [0, 1, 2];
404    ///
405    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
406    ///     first[0] = 3;
407    ///     first[1] = 4;
408    ///     elements[0] = 5;
409    /// }
410    /// assert_eq!(x, &[3, 4, 5]);
411    ///
412    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
413    /// ```
414    #[inline]
415    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
416    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
417    pub const fn split_first_chunk_mut<const N: usize>(
418        &mut self,
419    ) -> Option<(&mut [T; N], &mut [T])> {
420        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
421
422        // SAFETY: We explicitly check for the correct number of elements,
423        //   do not let the reference outlive the slice,
424        //   and enforce exclusive mutability of the chunk by the split.
425        Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
426    }
427
428    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
429    ///
430    /// If the slice is not at least `N` in length, this will return `None`.
431    ///
432    /// # Examples
433    ///
434    /// ```
435    /// let x = &[0, 1, 2];
436    ///
437    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
438    ///     assert_eq!(elements, &[0]);
439    ///     assert_eq!(last, &[1, 2]);
440    /// }
441    ///
442    /// assert_eq!(None, x.split_last_chunk::<4>());
443    /// ```
444    #[inline]
445    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
446    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
447    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
448        let Some(index) = self.len().checked_sub(N) else { return None };
449        let (init, last) = self.split_at(index);
450
451        // SAFETY: We explicitly check for the correct number of elements,
452        //   and do not let the references outlive the slice.
453        Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
454    }
455
456    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
457    /// slice.
458    ///
459    /// If the slice is not at least `N` in length, this will return `None`.
460    ///
461    /// # Examples
462    ///
463    /// ```
464    /// let x = &mut [0, 1, 2];
465    ///
466    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
467    ///     last[0] = 3;
468    ///     last[1] = 4;
469    ///     elements[0] = 5;
470    /// }
471    /// assert_eq!(x, &[5, 3, 4]);
472    ///
473    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
474    /// ```
475    #[inline]
476    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
477    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
478    pub const fn split_last_chunk_mut<const N: usize>(
479        &mut self,
480    ) -> Option<(&mut [T], &mut [T; N])> {
481        let Some(index) = self.len().checked_sub(N) else { return None };
482        let (init, last) = self.split_at_mut(index);
483
484        // SAFETY: We explicitly check for the correct number of elements,
485        //   do not let the reference outlive the slice,
486        //   and enforce exclusive mutability of the chunk by the split.
487        Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
488    }
489
490    /// Returns an array reference to the last `N` items in the slice.
491    ///
492    /// If the slice is not at least `N` in length, this will return `None`.
493    ///
494    /// # Examples
495    ///
496    /// ```
497    /// let u = [10, 40, 30];
498    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
499    ///
500    /// let v: &[i32] = &[10];
501    /// assert_eq!(None, v.last_chunk::<2>());
502    ///
503    /// let w: &[i32] = &[];
504    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
505    /// ```
506    #[inline]
507    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
508    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
509    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
510        // FIXME(const-hack): Without const traits, we need this instead of `get`.
511        let Some(index) = self.len().checked_sub(N) else { return None };
512        let (_, last) = self.split_at(index);
513
514        // SAFETY: We explicitly check for the correct number of elements,
515        //   and do not let the references outlive the slice.
516        Some(unsafe { &*(last.as_ptr().cast_array()) })
517    }
518
519    /// Returns a mutable array reference to the last `N` items in the slice.
520    ///
521    /// If the slice is not at least `N` in length, this will return `None`.
522    ///
523    /// # Examples
524    ///
525    /// ```
526    /// let x = &mut [0, 1, 2];
527    ///
528    /// if let Some(last) = x.last_chunk_mut::<2>() {
529    ///     last[0] = 10;
530    ///     last[1] = 20;
531    /// }
532    /// assert_eq!(x, &[0, 10, 20]);
533    ///
534    /// assert_eq!(None, x.last_chunk_mut::<4>());
535    /// ```
536    #[inline]
537    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
538    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
539    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
540        // FIXME(const-hack): Without const traits, we need this instead of `get`.
541        let Some(index) = self.len().checked_sub(N) else { return None };
542        let (_, last) = self.split_at_mut(index);
543
544        // SAFETY: We explicitly check for the correct number of elements,
545        //   do not let the reference outlive the slice,
546        //   and require exclusive access to the entire slice to mutate the chunk.
547        Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
548    }
549
550    /// Returns a reference to an element or subslice depending on the type of
551    /// index.
552    ///
553    /// - If given a position, returns a reference to the element at that
554    ///   position or `None` if out of bounds.
555    /// - If given a range, returns the subslice corresponding to that range,
556    ///   or `None` if out of bounds.
557    ///
558    /// # Examples
559    ///
560    /// ```
561    /// let v = [10, 40, 30];
562    /// assert_eq!(Some(&40), v.get(1));
563    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
564    /// assert_eq!(None, v.get(3));
565    /// assert_eq!(None, v.get(0..4));
566    /// ```
567    #[stable(feature = "rust1", since = "1.0.0")]
568    #[rustc_no_implicit_autorefs]
569    #[inline]
570    #[must_use]
571    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
572    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
573    where
574        I: [const] SliceIndex<Self>,
575    {
576        index.get(self)
577    }
578
579    /// Returns a mutable reference to an element or subslice depending on the
580    /// type of index (see [`get`]) or `None` if the index is out of bounds.
581    ///
582    /// [`get`]: slice::get
583    ///
584    /// # Examples
585    ///
586    /// ```
587    /// let x = &mut [0, 1, 2];
588    ///
589    /// if let Some(elem) = x.get_mut(1) {
590    ///     *elem = 42;
591    /// }
592    /// assert_eq!(x, &[0, 42, 2]);
593    /// ```
594    #[stable(feature = "rust1", since = "1.0.0")]
595    #[rustc_no_implicit_autorefs]
596    #[inline]
597    #[must_use]
598    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
599    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
600    where
601        I: [const] SliceIndex<Self>,
602    {
603        index.get_mut(self)
604    }
605
606    /// Returns a reference to an element or subslice, without doing bounds
607    /// checking.
608    ///
609    /// For a safe alternative see [`get`].
610    ///
611    /// # Safety
612    ///
613    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
614    /// even if the resulting reference is not used.
615    ///
616    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
617    /// to call `.get_unchecked(len)`, even if you immediately convert to a
618    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
619    /// `.get_unchecked(..=len)`, or similar.
620    ///
621    /// [`get`]: slice::get
622    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
623    ///
624    /// # Examples
625    ///
626    /// ```
627    /// let x = &[1, 2, 4];
628    ///
629    /// unsafe {
630    ///     assert_eq!(x.get_unchecked(1), &2);
631    /// }
632    /// ```
633    #[stable(feature = "rust1", since = "1.0.0")]
634    #[rustc_no_implicit_autorefs]
635    #[inline]
636    #[must_use]
637    #[track_caller]
638    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
639    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
640    where
641        I: [const] SliceIndex<Self>,
642    {
643        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
644        // the slice is dereferenceable because `self` is a safe reference.
645        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
646        unsafe { &*index.get_unchecked(self) }
647    }
648
649    /// Returns a mutable reference to an element or subslice, without doing
650    /// bounds checking.
651    ///
652    /// For a safe alternative see [`get_mut`].
653    ///
654    /// # Safety
655    ///
656    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
657    /// even if the resulting reference is not used.
658    ///
659    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
660    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
661    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
662    /// `.get_unchecked_mut(..=len)`, or similar.
663    ///
664    /// [`get_mut`]: slice::get_mut
665    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// let x = &mut [1, 2, 4];
671    ///
672    /// unsafe {
673    ///     let elem = x.get_unchecked_mut(1);
674    ///     *elem = 13;
675    /// }
676    /// assert_eq!(x, &[1, 13, 4]);
677    /// ```
678    #[stable(feature = "rust1", since = "1.0.0")]
679    #[rustc_no_implicit_autorefs]
680    #[inline]
681    #[must_use]
682    #[track_caller]
683    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
684    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
685    where
686        I: [const] SliceIndex<Self>,
687    {
688        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
689        // the slice is dereferenceable because `self` is a safe reference.
690        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
691        unsafe { &mut *index.get_unchecked_mut(self) }
692    }
693
694    /// Returns a raw pointer to the slice's buffer.
695    ///
696    /// The caller must ensure that the slice outlives the pointer this
697    /// function returns, or else it will end up dangling.
698    ///
699    /// The caller must also ensure that the memory the pointer (non-transitively) points to
700    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
701    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
702    ///
703    /// Modifying the container referenced by this slice may cause its buffer
704    /// to be reallocated, which would also make any pointers to it invalid.
705    ///
706    /// # Examples
707    ///
708    /// ```
709    /// let x = &[1, 2, 4];
710    /// let x_ptr = x.as_ptr();
711    ///
712    /// unsafe {
713    ///     for i in 0..x.len() {
714    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
715    ///     }
716    /// }
717    /// ```
718    ///
719    /// [`as_mut_ptr`]: slice::as_mut_ptr
720    #[stable(feature = "rust1", since = "1.0.0")]
721    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
722    #[rustc_never_returns_null_ptr]
723    #[rustc_as_ptr]
724    #[inline(always)]
725    #[must_use]
726    pub const fn as_ptr(&self) -> *const T {
727        self as *const [T] as *const T
728    }
729
730    /// Returns an unsafe mutable pointer to the slice's buffer.
731    ///
732    /// The caller must ensure that the slice outlives the pointer this
733    /// function returns, or else it will end up dangling.
734    ///
735    /// Modifying the container referenced by this slice may cause its buffer
736    /// to be reallocated, which would also make any pointers to it invalid.
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// let x = &mut [1, 2, 4];
742    /// let x_ptr = x.as_mut_ptr();
743    ///
744    /// unsafe {
745    ///     for i in 0..x.len() {
746    ///         *x_ptr.add(i) += 2;
747    ///     }
748    /// }
749    /// assert_eq!(x, &[3, 4, 6]);
750    /// ```
751    #[stable(feature = "rust1", since = "1.0.0")]
752    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
753    #[rustc_never_returns_null_ptr]
754    #[rustc_as_ptr]
755    #[inline(always)]
756    #[must_use]
757    pub const fn as_mut_ptr(&mut self) -> *mut T {
758        self as *mut [T] as *mut T
759    }
760
761    /// Returns the two raw pointers spanning the slice.
762    ///
763    /// The returned range is half-open, which means that the end pointer
764    /// points *one past* the last element of the slice. This way, an empty
765    /// slice is represented by two equal pointers, and the difference between
766    /// the two pointers represents the size of the slice.
767    ///
768    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
769    /// requires extra caution, as it does not point to a valid element in the
770    /// slice.
771    ///
772    /// This function is useful for interacting with foreign interfaces which
773    /// use two pointers to refer to a range of elements in memory, as is
774    /// common in C++.
775    ///
776    /// It can also be useful to check if a pointer to an element refers to an
777    /// element of this slice:
778    ///
779    /// ```
780    /// let a = [1, 2, 3];
781    /// let x = &a[1] as *const _;
782    /// let y = &5 as *const _;
783    ///
784    /// assert!(a.as_ptr_range().contains(&x));
785    /// assert!(!a.as_ptr_range().contains(&y));
786    /// ```
787    ///
788    /// [`as_ptr`]: slice::as_ptr
789    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
790    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
791    #[inline]
792    #[must_use]
793    pub const fn as_ptr_range(&self) -> Range<*const T> {
794        let start = self.as_ptr();
795        // SAFETY: The `add` here is safe, because:
796        //
797        //   - Both pointers are part of the same object, as pointing directly
798        //     past the object also counts.
799        //
800        //   - The size of the slice is never larger than `isize::MAX` bytes, as
801        //     noted here:
802        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
803        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
804        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
805        //     (This doesn't seem normative yet, but the very same assumption is
806        //     made in many places, including the Index implementation of slices.)
807        //
808        //   - There is no wrapping around involved, as slices do not wrap past
809        //     the end of the address space.
810        //
811        // See the documentation of [`pointer::add`].
812        let end = unsafe { start.add(self.len()) };
813        start..end
814    }
815
816    /// Returns the two unsafe mutable pointers spanning the slice.
817    ///
818    /// The returned range is half-open, which means that the end pointer
819    /// points *one past* the last element of the slice. This way, an empty
820    /// slice is represented by two equal pointers, and the difference between
821    /// the two pointers represents the size of the slice.
822    ///
823    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
824    /// pointer requires extra caution, as it does not point to a valid element
825    /// in the slice.
826    ///
827    /// This function is useful for interacting with foreign interfaces which
828    /// use two pointers to refer to a range of elements in memory, as is
829    /// common in C++.
830    ///
831    /// [`as_mut_ptr`]: slice::as_mut_ptr
832    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
833    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
834    #[inline]
835    #[must_use]
836    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
837        let start = self.as_mut_ptr();
838        // SAFETY: See as_ptr_range() above for why `add` here is safe.
839        let end = unsafe { start.add(self.len()) };
840        start..end
841    }
842
843    /// Gets a reference to the underlying array.
844    ///
845    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
846    #[stable(feature = "core_slice_as_array", since = "1.93.0")]
847    #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
848    #[inline]
849    #[must_use]
850    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
851        if self.len() == N {
852            let ptr = self.as_ptr().cast_array();
853
854            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
855            let me = unsafe { &*ptr };
856            Some(me)
857        } else {
858            None
859        }
860    }
861
862    /// Gets a mutable reference to the slice's underlying array.
863    ///
864    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
865    #[stable(feature = "core_slice_as_array", since = "1.93.0")]
866    #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
867    #[inline]
868    #[must_use]
869    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
870        if self.len() == N {
871            let ptr = self.as_mut_ptr().cast_array();
872
873            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
874            let me = unsafe { &mut *ptr };
875            Some(me)
876        } else {
877            None
878        }
879    }
880
881    /// Swaps two elements in the slice.
882    ///
883    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
884    ///
885    /// # Arguments
886    ///
887    /// * a - The index of the first element
888    /// * b - The index of the second element
889    ///
890    /// # Panics
891    ///
892    /// Panics if `a` or `b` are out of bounds.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// let mut v = ["a", "b", "c", "d", "e"];
898    /// v.swap(2, 4);
899    /// assert!(v == ["a", "b", "e", "d", "c"]);
900    /// ```
901    #[stable(feature = "rust1", since = "1.0.0")]
902    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
903    #[inline]
904    #[track_caller]
905    pub const fn swap(&mut self, a: usize, b: usize) {
906        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
907        // Can't take two mutable loans from one vector, so instead use raw pointers.
908        let pa = &raw mut self[a];
909        let pb = &raw mut self[b];
910        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
911        // to elements in the slice and therefore are guaranteed to be valid and aligned.
912        // Note that accessing the elements behind `a` and `b` is checked and will
913        // panic when out of bounds.
914        unsafe {
915            ptr::swap(pa, pb);
916        }
917    }
918
919    /// Swaps two elements in the slice, without doing bounds checking.
920    ///
921    /// For a safe alternative see [`swap`].
922    ///
923    /// # Arguments
924    ///
925    /// * a - The index of the first element
926    /// * b - The index of the second element
927    ///
928    /// # Safety
929    ///
930    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
931    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
932    ///
933    /// # Examples
934    ///
935    /// ```
936    /// #![feature(slice_swap_unchecked)]
937    ///
938    /// let mut v = ["a", "b", "c", "d"];
939    /// // SAFETY: we know that 1 and 3 are both indices of the slice
940    /// unsafe { v.swap_unchecked(1, 3) };
941    /// assert!(v == ["a", "d", "c", "b"]);
942    /// ```
943    ///
944    /// [`swap`]: slice::swap
945    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
946    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
947    #[track_caller]
948    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
949        assert_unsafe_precondition!(
950            check_library_ub,
951            "slice::swap_unchecked requires that the indices are within the slice",
952            (
953                len: usize = self.len(),
954                a: usize = a,
955                b: usize = b,
956            ) => a < len && b < len,
957        );
958
959        let ptr = self.as_mut_ptr();
960        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
961        unsafe {
962            ptr::swap(ptr.add(a), ptr.add(b));
963        }
964    }
965
966    /// Reverses the order of elements in the slice, in place.
967    ///
968    /// # Examples
969    ///
970    /// ```
971    /// let mut v = [1, 2, 3];
972    /// v.reverse();
973    /// assert!(v == [3, 2, 1]);
974    /// ```
975    #[stable(feature = "rust1", since = "1.0.0")]
976    #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
977    #[inline]
978    pub const fn reverse(&mut self) {
979        let half_len = self.len() / 2;
980        let Range { start, end } = self.as_mut_ptr_range();
981
982        // These slices will skip the middle item for an odd length,
983        // since that one doesn't need to move.
984        let (front_half, back_half) =
985            // SAFETY: Both are subparts of the original slice, so the memory
986            // range is valid, and they don't overlap because they're each only
987            // half (or less) of the original slice.
988            unsafe {
989                (
990                    slice::from_raw_parts_mut(start, half_len),
991                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
992                )
993            };
994
995        // Introducing a function boundary here means that the two halves
996        // get `noalias` markers, allowing better optimization as LLVM
997        // knows that they're disjoint, unlike in the original slice.
998        revswap(front_half, back_half, half_len);
999
1000        #[inline]
1001        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1002            debug_assert!(a.len() == n);
1003            debug_assert!(b.len() == n);
1004
1005            // Because this function is first compiled in isolation,
1006            // this check tells LLVM that the indexing below is
1007            // in-bounds. Then after inlining -- once the actual
1008            // lengths of the slices are known -- it's removed.
1009            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1010            let (a, _) = a.split_at_mut(n);
1011            let (b, _) = b.split_at_mut(n);
1012
1013            let mut i = 0;
1014            while i < n {
1015                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1016                i += 1;
1017            }
1018        }
1019    }
1020
1021    /// Returns an iterator over the slice.
1022    ///
1023    /// The iterator yields all items from start to end.
1024    ///
1025    /// # Examples
1026    ///
1027    /// ```
1028    /// let x = &[1, 2, 4];
1029    /// let mut iterator = x.iter();
1030    ///
1031    /// assert_eq!(iterator.next(), Some(&1));
1032    /// assert_eq!(iterator.next(), Some(&2));
1033    /// assert_eq!(iterator.next(), Some(&4));
1034    /// assert_eq!(iterator.next(), None);
1035    /// ```
1036    #[stable(feature = "rust1", since = "1.0.0")]
1037    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1038    #[inline]
1039    #[rustc_diagnostic_item = "slice_iter"]
1040    pub const fn iter(&self) -> Iter<'_, T> {
1041        Iter::new(self)
1042    }
1043
1044    /// Returns an iterator that allows modifying each value.
1045    ///
1046    /// The iterator yields all items from start to end.
1047    ///
1048    /// # Examples
1049    ///
1050    /// ```
1051    /// let x = &mut [1, 2, 4];
1052    /// for elem in x.iter_mut() {
1053    ///     *elem += 2;
1054    /// }
1055    /// assert_eq!(x, &[3, 4, 6]);
1056    /// ```
1057    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1058    #[stable(feature = "rust1", since = "1.0.0")]
1059    #[inline]
1060    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1061        IterMut::new(self)
1062    }
1063
1064    /// Returns an iterator over all contiguous windows of length
1065    /// `size`. The windows overlap. If the slice is shorter than
1066    /// `size`, the iterator returns no values.
1067    ///
1068    /// # Panics
1069    ///
1070    /// Panics if `size` is zero.
1071    ///
1072    /// # Examples
1073    ///
1074    /// ```
1075    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1076    /// let mut iter = slice.windows(3);
1077    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1078    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1079    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1080    /// assert!(iter.next().is_none());
1081    /// ```
1082    ///
1083    /// If the slice is shorter than `size`:
1084    ///
1085    /// ```
1086    /// let slice = ['f', 'o', 'o'];
1087    /// let mut iter = slice.windows(4);
1088    /// assert!(iter.next().is_none());
1089    /// ```
1090    ///
1091    /// Because the [Iterator] trait cannot represent the required lifetimes,
1092    /// there is no `windows_mut` analog to `windows`;
1093    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1094    /// (though a [LendingIterator] analog is possible). You can sometimes use
1095    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1096    /// conjunction with `windows` instead:
1097    ///
1098    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1099    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1100    /// ```
1101    /// use std::cell::Cell;
1102    ///
1103    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1104    /// let slice = &mut array[..];
1105    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1106    /// for w in slice_of_cells.windows(3) {
1107    ///     Cell::swap(&w[0], &w[2]);
1108    /// }
1109    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1110    /// ```
1111    #[stable(feature = "rust1", since = "1.0.0")]
1112    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1113    #[inline]
1114    #[track_caller]
1115    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1116        let size = NonZero::new(size).expect("window size must be non-zero");
1117        Windows::new(self, size)
1118    }
1119
1120    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1121    /// beginning of the slice.
1122    ///
1123    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1124    /// slice, then the last chunk will not have length `chunk_size`.
1125    ///
1126    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1127    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1128    /// slice.
1129    ///
1130    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1131    /// give references to arrays of exactly that length, rather than slices.
1132    ///
1133    /// # Panics
1134    ///
1135    /// Panics if `chunk_size` is zero.
1136    ///
1137    /// # Examples
1138    ///
1139    /// ```
1140    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1141    /// let mut iter = slice.chunks(2);
1142    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1143    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1144    /// assert_eq!(iter.next().unwrap(), &['m']);
1145    /// assert!(iter.next().is_none());
1146    /// ```
1147    ///
1148    /// [`chunks_exact`]: slice::chunks_exact
1149    /// [`rchunks`]: slice::rchunks
1150    /// [`as_chunks`]: slice::as_chunks
1151    #[stable(feature = "rust1", since = "1.0.0")]
1152    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1153    #[inline]
1154    #[track_caller]
1155    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1156        assert!(chunk_size != 0, "chunk size must be non-zero");
1157        Chunks::new(self, chunk_size)
1158    }
1159
1160    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1161    /// beginning of the slice.
1162    ///
1163    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1164    /// length of the slice, then the last chunk will not have length `chunk_size`.
1165    ///
1166    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1167    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1168    /// the end of the slice.
1169    ///
1170    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1171    /// give references to arrays of exactly that length, rather than slices.
1172    ///
1173    /// # Panics
1174    ///
1175    /// Panics if `chunk_size` is zero.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// let v = &mut [0, 0, 0, 0, 0];
1181    /// let mut count = 1;
1182    ///
1183    /// for chunk in v.chunks_mut(2) {
1184    ///     for elem in chunk.iter_mut() {
1185    ///         *elem += count;
1186    ///     }
1187    ///     count += 1;
1188    /// }
1189    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1190    /// ```
1191    ///
1192    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1193    /// [`rchunks_mut`]: slice::rchunks_mut
1194    /// [`as_chunks_mut`]: slice::as_chunks_mut
1195    #[stable(feature = "rust1", since = "1.0.0")]
1196    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1197    #[inline]
1198    #[track_caller]
1199    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1200        assert!(chunk_size != 0, "chunk size must be non-zero");
1201        ChunksMut::new(self, chunk_size)
1202    }
1203
1204    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1205    /// beginning of the slice.
1206    ///
1207    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1208    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1209    /// from the `remainder` function of the iterator.
1210    ///
1211    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1212    /// resulting code better than in the case of [`chunks`].
1213    ///
1214    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1215    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1216    ///
1217    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1218    /// give references to arrays of exactly that length, rather than slices.
1219    ///
1220    /// # Panics
1221    ///
1222    /// Panics if `chunk_size` is zero.
1223    ///
1224    /// # Examples
1225    ///
1226    /// ```
1227    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1228    /// let mut iter = slice.chunks_exact(2);
1229    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1230    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1231    /// assert!(iter.next().is_none());
1232    /// assert_eq!(iter.remainder(), &['m']);
1233    /// ```
1234    ///
1235    /// [`chunks`]: slice::chunks
1236    /// [`rchunks_exact`]: slice::rchunks_exact
1237    /// [`as_chunks`]: slice::as_chunks
1238    #[stable(feature = "chunks_exact", since = "1.31.0")]
1239    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1240    #[inline]
1241    #[track_caller]
1242    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1243        assert!(chunk_size != 0, "chunk size must be non-zero");
1244        ChunksExact::new(self, chunk_size)
1245    }
1246
1247    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1248    /// beginning of the slice.
1249    ///
1250    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1251    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1252    /// retrieved from the `into_remainder` function of the iterator.
1253    ///
1254    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1255    /// resulting code better than in the case of [`chunks_mut`].
1256    ///
1257    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1258    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1259    /// the slice.
1260    ///
1261    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1262    /// give references to arrays of exactly that length, rather than slices.
1263    ///
1264    /// # Panics
1265    ///
1266    /// Panics if `chunk_size` is zero.
1267    ///
1268    /// # Examples
1269    ///
1270    /// ```
1271    /// let v = &mut [0, 0, 0, 0, 0];
1272    /// let mut count = 1;
1273    ///
1274    /// for chunk in v.chunks_exact_mut(2) {
1275    ///     for elem in chunk.iter_mut() {
1276    ///         *elem += count;
1277    ///     }
1278    ///     count += 1;
1279    /// }
1280    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1281    /// ```
1282    ///
1283    /// [`chunks_mut`]: slice::chunks_mut
1284    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1285    /// [`as_chunks_mut`]: slice::as_chunks_mut
1286    #[stable(feature = "chunks_exact", since = "1.31.0")]
1287    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1288    #[inline]
1289    #[track_caller]
1290    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1291        assert!(chunk_size != 0, "chunk size must be non-zero");
1292        ChunksExactMut::new(self, chunk_size)
1293    }
1294
1295    /// Splits the slice into a slice of `N`-element arrays,
1296    /// assuming that there's no remainder.
1297    ///
1298    /// This is the inverse operation to [`as_flattened`].
1299    ///
1300    /// [`as_flattened`]: slice::as_flattened
1301    ///
1302    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1303    /// [`as_rchunks`] instead, perhaps via something like
1304    /// `if let (chunks, []) = slice.as_chunks()` or
1305    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1306    ///
1307    /// [`as_chunks`]: slice::as_chunks
1308    /// [`as_rchunks`]: slice::as_rchunks
1309    ///
1310    /// # Safety
1311    ///
1312    /// This may only be called when
1313    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1314    /// - `N != 0`.
1315    ///
1316    /// # Examples
1317    ///
1318    /// ```
1319    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1320    /// let chunks: &[[char; 1]] =
1321    ///     // SAFETY: 1-element chunks never have remainder
1322    ///     unsafe { slice.as_chunks_unchecked() };
1323    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1324    /// let chunks: &[[char; 3]] =
1325    ///     // SAFETY: The slice length (6) is a multiple of 3
1326    ///     unsafe { slice.as_chunks_unchecked() };
1327    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1328    ///
1329    /// // These would be unsound:
1330    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1331    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1332    /// ```
1333    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1334    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1335    #[inline]
1336    #[must_use]
1337    #[track_caller]
1338    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1339        assert_unsafe_precondition!(
1340            check_language_ub,
1341            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1342            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1343        );
1344        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1345        let new_len = unsafe { exact_div(self.len(), N) };
1346        // SAFETY: We cast a slice of `new_len * N` elements into
1347        // a slice of `new_len` many `N` elements chunks.
1348        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1349    }
1350
1351    /// Splits the slice into a slice of `N`-element arrays,
1352    /// starting at the beginning of the slice,
1353    /// and a remainder slice with length strictly less than `N`.
1354    ///
1355    /// The remainder is meaningful in the division sense.  Given
1356    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1357    /// - `chunks.len()` equals `slice.len() / N`,
1358    /// - `remainder.len()` equals `slice.len() % N`, and
1359    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1360    ///
1361    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1362    ///
1363    /// [`as_flattened`]: slice::as_flattened
1364    ///
1365    /// # Panics
1366    ///
1367    /// Panics if `N` is zero.
1368    ///
1369    /// Note that this check is against a const generic parameter, not a runtime
1370    /// value, and thus a particular monomorphization will either always panic
1371    /// or it will never panic.
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1377    /// let (chunks, remainder) = slice.as_chunks();
1378    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1379    /// assert_eq!(remainder, &['m']);
1380    /// ```
1381    ///
1382    /// If you expect the slice to be an exact multiple, you can combine
1383    /// `let`-`else` with an empty slice pattern:
1384    /// ```
1385    /// let slice = ['R', 'u', 's', 't'];
1386    /// let (chunks, []) = slice.as_chunks::<2>() else {
1387    ///     panic!("slice didn't have even length")
1388    /// };
1389    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1390    /// ```
1391    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1392    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1393    #[inline]
1394    #[track_caller]
1395    #[must_use]
1396    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1397        assert!(N != 0, "chunk size must be non-zero");
1398        let len_rounded_down = self.len() / N * N;
1399        // SAFETY: The rounded-down value is always the same or smaller than the
1400        // original length, and thus must be in-bounds of the slice.
1401        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1402        // SAFETY: We already panicked for zero, and ensured by construction
1403        // that the length of the subslice is a multiple of N.
1404        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1405        (array_slice, remainder)
1406    }
1407
1408    /// Splits the slice into a slice of `N`-element arrays,
1409    /// starting at the end of the slice,
1410    /// and a remainder slice with length strictly less than `N`.
1411    ///
1412    /// The remainder is meaningful in the division sense.  Given
1413    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1414    /// - `remainder.len()` equals `slice.len() % N`,
1415    /// - `chunks.len()` equals `slice.len() / N`, and
1416    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1417    ///
1418    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1419    ///
1420    /// [`as_flattened`]: slice::as_flattened
1421    ///
1422    /// # Panics
1423    ///
1424    /// Panics if `N` is zero.
1425    ///
1426    /// Note that this check is against a const generic parameter, not a runtime
1427    /// value, and thus a particular monomorphization will either always panic
1428    /// or it will never panic.
1429    ///
1430    /// # Examples
1431    ///
1432    /// ```
1433    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1434    /// let (remainder, chunks) = slice.as_rchunks();
1435    /// assert_eq!(remainder, &['l']);
1436    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1437    /// ```
1438    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1439    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1440    #[inline]
1441    #[track_caller]
1442    #[must_use]
1443    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1444        assert!(N != 0, "chunk size must be non-zero");
1445        let len = self.len() / N;
1446        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1447        // SAFETY: We already panicked for zero, and ensured by construction
1448        // that the length of the subslice is a multiple of N.
1449        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1450        (remainder, array_slice)
1451    }
1452
1453    /// Splits the slice into a slice of `N`-element arrays,
1454    /// assuming that there's no remainder.
1455    ///
1456    /// This is the inverse operation to [`as_flattened_mut`].
1457    ///
1458    /// [`as_flattened_mut`]: slice::as_flattened_mut
1459    ///
1460    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1461    /// [`as_rchunks_mut`] instead, perhaps via something like
1462    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1463    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1464    ///
1465    /// [`as_chunks_mut`]: slice::as_chunks_mut
1466    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1467    ///
1468    /// # Safety
1469    ///
1470    /// This may only be called when
1471    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1472    /// - `N != 0`.
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1478    /// let chunks: &mut [[char; 1]] =
1479    ///     // SAFETY: 1-element chunks never have remainder
1480    ///     unsafe { slice.as_chunks_unchecked_mut() };
1481    /// chunks[0] = ['L'];
1482    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1483    /// let chunks: &mut [[char; 3]] =
1484    ///     // SAFETY: The slice length (6) is a multiple of 3
1485    ///     unsafe { slice.as_chunks_unchecked_mut() };
1486    /// chunks[1] = ['a', 'x', '?'];
1487    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1488    ///
1489    /// // These would be unsound:
1490    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1491    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1492    /// ```
1493    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1494    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1495    #[inline]
1496    #[must_use]
1497    #[track_caller]
1498    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1499        assert_unsafe_precondition!(
1500            check_language_ub,
1501            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1502            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1503        );
1504        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1505        let new_len = unsafe { exact_div(self.len(), N) };
1506        // SAFETY: We cast a slice of `new_len * N` elements into
1507        // a slice of `new_len` many `N` elements chunks.
1508        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1509    }
1510
1511    /// Splits the slice into a slice of `N`-element arrays,
1512    /// starting at the beginning of the slice,
1513    /// and a remainder slice with length strictly less than `N`.
1514    ///
1515    /// The remainder is meaningful in the division sense.  Given
1516    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1517    /// - `chunks.len()` equals `slice.len() / N`,
1518    /// - `remainder.len()` equals `slice.len() % N`, and
1519    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1520    ///
1521    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1522    ///
1523    /// [`as_flattened_mut`]: slice::as_flattened_mut
1524    ///
1525    /// # Panics
1526    ///
1527    /// Panics if `N` is zero.
1528    ///
1529    /// Note that this check is against a const generic parameter, not a runtime
1530    /// value, and thus a particular monomorphization will either always panic
1531    /// or it will never panic.
1532    ///
1533    /// # Examples
1534    ///
1535    /// ```
1536    /// let v = &mut [0, 0, 0, 0, 0];
1537    /// let mut count = 1;
1538    ///
1539    /// let (chunks, remainder) = v.as_chunks_mut();
1540    /// remainder[0] = 9;
1541    /// for chunk in chunks {
1542    ///     *chunk = [count; 2];
1543    ///     count += 1;
1544    /// }
1545    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1546    /// ```
1547    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1548    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1549    #[inline]
1550    #[track_caller]
1551    #[must_use]
1552    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1553        assert!(N != 0, "chunk size must be non-zero");
1554        let len_rounded_down = self.len() / N * N;
1555        // SAFETY: The rounded-down value is always the same or smaller than the
1556        // original length, and thus must be in-bounds of the slice.
1557        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1558        // SAFETY: We already panicked for zero, and ensured by construction
1559        // that the length of the subslice is a multiple of N.
1560        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1561        (array_slice, remainder)
1562    }
1563
1564    /// Splits the slice into a slice of `N`-element arrays,
1565    /// starting at the end of the slice,
1566    /// and a remainder slice with length strictly less than `N`.
1567    ///
1568    /// The remainder is meaningful in the division sense.  Given
1569    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1570    /// - `remainder.len()` equals `slice.len() % N`,
1571    /// - `chunks.len()` equals `slice.len() / N`, and
1572    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1573    ///
1574    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1575    ///
1576    /// [`as_flattened_mut`]: slice::as_flattened_mut
1577    ///
1578    /// # Panics
1579    ///
1580    /// Panics if `N` is zero.
1581    ///
1582    /// Note that this check is against a const generic parameter, not a runtime
1583    /// value, and thus a particular monomorphization will either always panic
1584    /// or it will never panic.
1585    ///
1586    /// # Examples
1587    ///
1588    /// ```
1589    /// let v = &mut [0, 0, 0, 0, 0];
1590    /// let mut count = 1;
1591    ///
1592    /// let (remainder, chunks) = v.as_rchunks_mut();
1593    /// remainder[0] = 9;
1594    /// for chunk in chunks {
1595    ///     *chunk = [count; 2];
1596    ///     count += 1;
1597    /// }
1598    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1599    /// ```
1600    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1601    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1602    #[inline]
1603    #[track_caller]
1604    #[must_use]
1605    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1606        assert!(N != 0, "chunk size must be non-zero");
1607        let len = self.len() / N;
1608        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1609        // SAFETY: We already panicked for zero, and ensured by construction
1610        // that the length of the subslice is a multiple of N.
1611        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1612        (remainder, array_slice)
1613    }
1614
1615    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1616    /// starting at the beginning of the slice.
1617    ///
1618    /// This is the const generic equivalent of [`windows`].
1619    ///
1620    /// If `N` is greater than the size of the slice, it will return no windows.
1621    ///
1622    /// # Panics
1623    ///
1624    /// Panics if `N` is zero.
1625    ///
1626    /// Note that this check is against a const generic parameter, not a runtime
1627    /// value, and thus a particular monomorphization will either always panic
1628    /// or it will never panic.
1629    ///
1630    /// # Examples
1631    ///
1632    /// ```
1633    /// let slice = [0, 1, 2, 3];
1634    /// let mut iter = slice.array_windows();
1635    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1636    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1637    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1638    /// assert!(iter.next().is_none());
1639    /// ```
1640    ///
1641    /// [`windows`]: slice::windows
1642    #[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
1643    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1644    #[inline]
1645    #[track_caller]
1646    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1647        assert!(N != 0, "window size must be non-zero");
1648        ArrayWindows::new(self)
1649    }
1650
1651    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1652    /// of the slice.
1653    ///
1654    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1655    /// slice, then the last chunk will not have length `chunk_size`.
1656    ///
1657    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1658    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1659    /// of the slice.
1660    ///
1661    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1662    /// give references to arrays of exactly that length, rather than slices.
1663    ///
1664    /// # Panics
1665    ///
1666    /// Panics if `chunk_size` is zero.
1667    ///
1668    /// # Examples
1669    ///
1670    /// ```
1671    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1672    /// let mut iter = slice.rchunks(2);
1673    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1674    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1675    /// assert_eq!(iter.next().unwrap(), &['l']);
1676    /// assert!(iter.next().is_none());
1677    /// ```
1678    ///
1679    /// [`rchunks_exact`]: slice::rchunks_exact
1680    /// [`chunks`]: slice::chunks
1681    /// [`as_rchunks`]: slice::as_rchunks
1682    #[stable(feature = "rchunks", since = "1.31.0")]
1683    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1684    #[inline]
1685    #[track_caller]
1686    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1687        assert!(chunk_size != 0, "chunk size must be non-zero");
1688        RChunks::new(self, chunk_size)
1689    }
1690
1691    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1692    /// of the slice.
1693    ///
1694    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1695    /// length of the slice, then the last chunk will not have length `chunk_size`.
1696    ///
1697    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1698    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1699    /// beginning of the slice.
1700    ///
1701    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1702    /// give references to arrays of exactly that length, rather than slices.
1703    ///
1704    /// # Panics
1705    ///
1706    /// Panics if `chunk_size` is zero.
1707    ///
1708    /// # Examples
1709    ///
1710    /// ```
1711    /// let v = &mut [0, 0, 0, 0, 0];
1712    /// let mut count = 1;
1713    ///
1714    /// for chunk in v.rchunks_mut(2) {
1715    ///     for elem in chunk.iter_mut() {
1716    ///         *elem += count;
1717    ///     }
1718    ///     count += 1;
1719    /// }
1720    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1721    /// ```
1722    ///
1723    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1724    /// [`chunks_mut`]: slice::chunks_mut
1725    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1726    #[stable(feature = "rchunks", since = "1.31.0")]
1727    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1728    #[inline]
1729    #[track_caller]
1730    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1731        assert!(chunk_size != 0, "chunk size must be non-zero");
1732        RChunksMut::new(self, chunk_size)
1733    }
1734
1735    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1736    /// end of the slice.
1737    ///
1738    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1739    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1740    /// from the `remainder` function of the iterator.
1741    ///
1742    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1743    /// resulting code better than in the case of [`rchunks`].
1744    ///
1745    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1746    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1747    /// slice.
1748    ///
1749    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1750    /// give references to arrays of exactly that length, rather than slices.
1751    ///
1752    /// # Panics
1753    ///
1754    /// Panics if `chunk_size` is zero.
1755    ///
1756    /// # Examples
1757    ///
1758    /// ```
1759    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1760    /// let mut iter = slice.rchunks_exact(2);
1761    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1762    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1763    /// assert!(iter.next().is_none());
1764    /// assert_eq!(iter.remainder(), &['l']);
1765    /// ```
1766    ///
1767    /// [`chunks`]: slice::chunks
1768    /// [`rchunks`]: slice::rchunks
1769    /// [`chunks_exact`]: slice::chunks_exact
1770    /// [`as_rchunks`]: slice::as_rchunks
1771    #[stable(feature = "rchunks", since = "1.31.0")]
1772    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1773    #[inline]
1774    #[track_caller]
1775    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1776        assert!(chunk_size != 0, "chunk size must be non-zero");
1777        RChunksExact::new(self, chunk_size)
1778    }
1779
1780    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1781    /// of the slice.
1782    ///
1783    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1784    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1785    /// retrieved from the `into_remainder` function of the iterator.
1786    ///
1787    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1788    /// resulting code better than in the case of [`chunks_mut`].
1789    ///
1790    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1791    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1792    /// of the slice.
1793    ///
1794    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1795    /// give references to arrays of exactly that length, rather than slices.
1796    ///
1797    /// # Panics
1798    ///
1799    /// Panics if `chunk_size` is zero.
1800    ///
1801    /// # Examples
1802    ///
1803    /// ```
1804    /// let v = &mut [0, 0, 0, 0, 0];
1805    /// let mut count = 1;
1806    ///
1807    /// for chunk in v.rchunks_exact_mut(2) {
1808    ///     for elem in chunk.iter_mut() {
1809    ///         *elem += count;
1810    ///     }
1811    ///     count += 1;
1812    /// }
1813    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1814    /// ```
1815    ///
1816    /// [`chunks_mut`]: slice::chunks_mut
1817    /// [`rchunks_mut`]: slice::rchunks_mut
1818    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1819    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1820    #[stable(feature = "rchunks", since = "1.31.0")]
1821    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1822    #[inline]
1823    #[track_caller]
1824    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1825        assert!(chunk_size != 0, "chunk size must be non-zero");
1826        RChunksExactMut::new(self, chunk_size)
1827    }
1828
1829    /// Returns an iterator over the slice producing non-overlapping runs
1830    /// of elements using the predicate to separate them.
1831    ///
1832    /// The predicate is called for every pair of consecutive elements,
1833    /// meaning that it is called on `slice[0]` and `slice[1]`,
1834    /// followed by `slice[1]` and `slice[2]`, and so on.
1835    ///
1836    /// # Examples
1837    ///
1838    /// ```
1839    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1840    ///
1841    /// let mut iter = slice.chunk_by(|a, b| a == b);
1842    ///
1843    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1844    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1845    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1846    /// assert_eq!(iter.next(), None);
1847    /// ```
1848    ///
1849    /// This method can be used to extract the sorted subslices:
1850    ///
1851    /// ```
1852    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1853    ///
1854    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1855    ///
1856    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1857    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1858    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1859    /// assert_eq!(iter.next(), None);
1860    /// ```
1861    #[stable(feature = "slice_group_by", since = "1.77.0")]
1862    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1863    #[inline]
1864    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1865    where
1866        F: FnMut(&T, &T) -> bool,
1867    {
1868        ChunkBy::new(self, pred)
1869    }
1870
1871    /// Returns an iterator over the slice producing non-overlapping mutable
1872    /// runs of elements using the predicate to separate them.
1873    ///
1874    /// The predicate is called for every pair of consecutive elements,
1875    /// meaning that it is called on `slice[0]` and `slice[1]`,
1876    /// followed by `slice[1]` and `slice[2]`, and so on.
1877    ///
1878    /// # Examples
1879    ///
1880    /// ```
1881    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1882    ///
1883    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1884    ///
1885    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1886    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1887    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1888    /// assert_eq!(iter.next(), None);
1889    /// ```
1890    ///
1891    /// This method can be used to extract the sorted subslices:
1892    ///
1893    /// ```
1894    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1895    ///
1896    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1897    ///
1898    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1899    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1900    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1901    /// assert_eq!(iter.next(), None);
1902    /// ```
1903    #[stable(feature = "slice_group_by", since = "1.77.0")]
1904    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1905    #[inline]
1906    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1907    where
1908        F: FnMut(&T, &T) -> bool,
1909    {
1910        ChunkByMut::new(self, pred)
1911    }
1912
1913    /// Divides one slice into two at an index.
1914    ///
1915    /// The first will contain all indices from `[0, mid)` (excluding
1916    /// the index `mid` itself) and the second will contain all
1917    /// indices from `[mid, len)` (excluding the index `len` itself).
1918    ///
1919    /// # Panics
1920    ///
1921    /// Panics if `mid > len`.  For a non-panicking alternative see
1922    /// [`split_at_checked`](slice::split_at_checked).
1923    ///
1924    /// # Examples
1925    ///
1926    /// ```
1927    /// let v = ['a', 'b', 'c'];
1928    ///
1929    /// {
1930    ///    let (left, right) = v.split_at(0);
1931    ///    assert_eq!(left, []);
1932    ///    assert_eq!(right, ['a', 'b', 'c']);
1933    /// }
1934    ///
1935    /// {
1936    ///     let (left, right) = v.split_at(2);
1937    ///     assert_eq!(left, ['a', 'b']);
1938    ///     assert_eq!(right, ['c']);
1939    /// }
1940    ///
1941    /// {
1942    ///     let (left, right) = v.split_at(3);
1943    ///     assert_eq!(left, ['a', 'b', 'c']);
1944    ///     assert_eq!(right, []);
1945    /// }
1946    /// ```
1947    #[stable(feature = "rust1", since = "1.0.0")]
1948    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1949    #[inline]
1950    #[track_caller]
1951    #[must_use]
1952    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1953        match self.split_at_checked(mid) {
1954            Some(pair) => pair,
1955            None => panic!("mid > len"),
1956        }
1957    }
1958
1959    /// Divides one mutable slice into two at an index.
1960    ///
1961    /// The first will contain all indices from `[0, mid)` (excluding
1962    /// the index `mid` itself) and the second will contain all
1963    /// indices from `[mid, len)` (excluding the index `len` itself).
1964    ///
1965    /// # Panics
1966    ///
1967    /// Panics if `mid > len`.  For a non-panicking alternative see
1968    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1969    ///
1970    /// # Examples
1971    ///
1972    /// ```
1973    /// let mut v = [1, 0, 3, 0, 5, 6];
1974    /// let (left, right) = v.split_at_mut(2);
1975    /// assert_eq!(left, [1, 0]);
1976    /// assert_eq!(right, [3, 0, 5, 6]);
1977    /// left[1] = 2;
1978    /// right[1] = 4;
1979    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1980    /// ```
1981    #[stable(feature = "rust1", since = "1.0.0")]
1982    #[inline]
1983    #[track_caller]
1984    #[must_use]
1985    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
1986    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1987        match self.split_at_mut_checked(mid) {
1988            Some(pair) => pair,
1989            None => panic!("mid > len"),
1990        }
1991    }
1992
1993    /// Divides one slice into two at an index, without doing bounds checking.
1994    ///
1995    /// The first will contain all indices from `[0, mid)` (excluding
1996    /// the index `mid` itself) and the second will contain all
1997    /// indices from `[mid, len)` (excluding the index `len` itself).
1998    ///
1999    /// For a safe alternative see [`split_at`].
2000    ///
2001    /// # Safety
2002    ///
2003    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2004    /// even if the resulting reference is not used. The caller has to ensure that
2005    /// `0 <= mid <= self.len()`.
2006    ///
2007    /// [`split_at`]: slice::split_at
2008    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2009    ///
2010    /// # Examples
2011    ///
2012    /// ```
2013    /// let v = ['a', 'b', 'c'];
2014    ///
2015    /// unsafe {
2016    ///    let (left, right) = v.split_at_unchecked(0);
2017    ///    assert_eq!(left, []);
2018    ///    assert_eq!(right, ['a', 'b', 'c']);
2019    /// }
2020    ///
2021    /// unsafe {
2022    ///     let (left, right) = v.split_at_unchecked(2);
2023    ///     assert_eq!(left, ['a', 'b']);
2024    ///     assert_eq!(right, ['c']);
2025    /// }
2026    ///
2027    /// unsafe {
2028    ///     let (left, right) = v.split_at_unchecked(3);
2029    ///     assert_eq!(left, ['a', 'b', 'c']);
2030    ///     assert_eq!(right, []);
2031    /// }
2032    /// ```
2033    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2034    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2035    #[inline]
2036    #[must_use]
2037    #[track_caller]
2038    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2039        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2040        // function const; previously the implementation used
2041        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2042
2043        let len = self.len();
2044        let ptr = self.as_ptr();
2045
2046        assert_unsafe_precondition!(
2047            check_library_ub,
2048            "slice::split_at_unchecked requires the index to be within the slice",
2049            (mid: usize = mid, len: usize = len) => mid <= len,
2050        );
2051
2052        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2053        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2054    }
2055
2056    /// Divides one mutable slice into two at an index, without doing bounds checking.
2057    ///
2058    /// The first will contain all indices from `[0, mid)` (excluding
2059    /// the index `mid` itself) and the second will contain all
2060    /// indices from `[mid, len)` (excluding the index `len` itself).
2061    ///
2062    /// For a safe alternative see [`split_at_mut`].
2063    ///
2064    /// # Safety
2065    ///
2066    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2067    /// even if the resulting reference is not used. The caller has to ensure that
2068    /// `0 <= mid <= self.len()`.
2069    ///
2070    /// [`split_at_mut`]: slice::split_at_mut
2071    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2072    ///
2073    /// # Examples
2074    ///
2075    /// ```
2076    /// let mut v = [1, 0, 3, 0, 5, 6];
2077    /// // scoped to restrict the lifetime of the borrows
2078    /// unsafe {
2079    ///     let (left, right) = v.split_at_mut_unchecked(2);
2080    ///     assert_eq!(left, [1, 0]);
2081    ///     assert_eq!(right, [3, 0, 5, 6]);
2082    ///     left[1] = 2;
2083    ///     right[1] = 4;
2084    /// }
2085    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2086    /// ```
2087    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2088    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2089    #[inline]
2090    #[must_use]
2091    #[track_caller]
2092    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2093        let len = self.len();
2094        let ptr = self.as_mut_ptr();
2095
2096        assert_unsafe_precondition!(
2097            check_library_ub,
2098            "slice::split_at_mut_unchecked requires the index to be within the slice",
2099            (mid: usize = mid, len: usize = len) => mid <= len,
2100        );
2101
2102        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2103        //
2104        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2105        // is fine.
2106        unsafe {
2107            (
2108                from_raw_parts_mut(ptr, mid),
2109                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2110            )
2111        }
2112    }
2113
2114    /// Divides one slice into two at an index, returning `None` if the slice is
2115    /// too short.
2116    ///
2117    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2118    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2119    /// second will contain all indices from `[mid, len)` (excluding the index
2120    /// `len` itself).
2121    ///
2122    /// Otherwise, if `mid > len`, returns `None`.
2123    ///
2124    /// # Examples
2125    ///
2126    /// ```
2127    /// let v = [1, -2, 3, -4, 5, -6];
2128    ///
2129    /// {
2130    ///    let (left, right) = v.split_at_checked(0).unwrap();
2131    ///    assert_eq!(left, []);
2132    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2133    /// }
2134    ///
2135    /// {
2136    ///     let (left, right) = v.split_at_checked(2).unwrap();
2137    ///     assert_eq!(left, [1, -2]);
2138    ///     assert_eq!(right, [3, -4, 5, -6]);
2139    /// }
2140    ///
2141    /// {
2142    ///     let (left, right) = v.split_at_checked(6).unwrap();
2143    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2144    ///     assert_eq!(right, []);
2145    /// }
2146    ///
2147    /// assert_eq!(None, v.split_at_checked(7));
2148    /// ```
2149    #[stable(feature = "split_at_checked", since = "1.80.0")]
2150    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2151    #[inline]
2152    #[must_use]
2153    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2154        if mid <= self.len() {
2155            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2156            // fulfills the requirements of `split_at_unchecked`.
2157            Some(unsafe { self.split_at_unchecked(mid) })
2158        } else {
2159            None
2160        }
2161    }
2162
2163    /// Divides one mutable slice into two at an index, returning `None` if the
2164    /// slice is too short.
2165    ///
2166    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2167    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2168    /// second will contain all indices from `[mid, len)` (excluding the index
2169    /// `len` itself).
2170    ///
2171    /// Otherwise, if `mid > len`, returns `None`.
2172    ///
2173    /// # Examples
2174    ///
2175    /// ```
2176    /// let mut v = [1, 0, 3, 0, 5, 6];
2177    ///
2178    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2179    ///     assert_eq!(left, [1, 0]);
2180    ///     assert_eq!(right, [3, 0, 5, 6]);
2181    ///     left[1] = 2;
2182    ///     right[1] = 4;
2183    /// }
2184    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2185    ///
2186    /// assert_eq!(None, v.split_at_mut_checked(7));
2187    /// ```
2188    #[stable(feature = "split_at_checked", since = "1.80.0")]
2189    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2190    #[inline]
2191    #[must_use]
2192    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2193        if mid <= self.len() {
2194            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2195            // fulfills the requirements of `split_at_unchecked`.
2196            Some(unsafe { self.split_at_mut_unchecked(mid) })
2197        } else {
2198            None
2199        }
2200    }
2201
2202    /// Returns an iterator over subslices separated by elements that match
2203    /// `pred`. The matched element is not contained in the subslices.
2204    ///
2205    /// # Examples
2206    ///
2207    /// ```
2208    /// let slice = [10, 40, 33, 20];
2209    /// let mut iter = slice.split(|num| num % 3 == 0);
2210    ///
2211    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2212    /// assert_eq!(iter.next().unwrap(), &[20]);
2213    /// assert!(iter.next().is_none());
2214    /// ```
2215    ///
2216    /// If the first element is matched, an empty slice will be the first item
2217    /// returned by the iterator. Similarly, if the last element in the slice
2218    /// is matched, an empty slice will be the last item returned by the
2219    /// iterator:
2220    ///
2221    /// ```
2222    /// let slice = [10, 40, 33];
2223    /// let mut iter = slice.split(|num| num % 3 == 0);
2224    ///
2225    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2226    /// assert_eq!(iter.next().unwrap(), &[]);
2227    /// assert!(iter.next().is_none());
2228    /// ```
2229    ///
2230    /// If two matched elements are directly adjacent, an empty slice will be
2231    /// present between them:
2232    ///
2233    /// ```
2234    /// let slice = [10, 6, 33, 20];
2235    /// let mut iter = slice.split(|num| num % 3 == 0);
2236    ///
2237    /// assert_eq!(iter.next().unwrap(), &[10]);
2238    /// assert_eq!(iter.next().unwrap(), &[]);
2239    /// assert_eq!(iter.next().unwrap(), &[20]);
2240    /// assert!(iter.next().is_none());
2241    /// ```
2242    #[stable(feature = "rust1", since = "1.0.0")]
2243    #[inline]
2244    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2245    where
2246        F: FnMut(&T) -> bool,
2247    {
2248        Split::new(self, pred)
2249    }
2250
2251    /// Returns an iterator over mutable subslices separated by elements that
2252    /// match `pred`. The matched element is not contained in the subslices.
2253    ///
2254    /// # Examples
2255    ///
2256    /// ```
2257    /// let mut v = [10, 40, 30, 20, 60, 50];
2258    ///
2259    /// for group in v.split_mut(|num| *num % 3 == 0) {
2260    ///     group[0] = 1;
2261    /// }
2262    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2263    /// ```
2264    #[stable(feature = "rust1", since = "1.0.0")]
2265    #[inline]
2266    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2267    where
2268        F: FnMut(&T) -> bool,
2269    {
2270        SplitMut::new(self, pred)
2271    }
2272
2273    /// Returns an iterator over subslices separated by elements that match
2274    /// `pred`. The matched element is contained in the end of the previous
2275    /// subslice as a terminator.
2276    ///
2277    /// # Examples
2278    ///
2279    /// ```
2280    /// let slice = [10, 40, 33, 20];
2281    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2282    ///
2283    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2284    /// assert_eq!(iter.next().unwrap(), &[20]);
2285    /// assert!(iter.next().is_none());
2286    /// ```
2287    ///
2288    /// If the last element of the slice is matched,
2289    /// that element will be considered the terminator of the preceding slice.
2290    /// That slice will be the last item returned by the iterator.
2291    ///
2292    /// ```
2293    /// let slice = [3, 10, 40, 33];
2294    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2295    ///
2296    /// assert_eq!(iter.next().unwrap(), &[3]);
2297    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2298    /// assert!(iter.next().is_none());
2299    /// ```
2300    #[stable(feature = "split_inclusive", since = "1.51.0")]
2301    #[inline]
2302    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2303    where
2304        F: FnMut(&T) -> bool,
2305    {
2306        SplitInclusive::new(self, pred)
2307    }
2308
2309    /// Returns an iterator over mutable subslices separated by elements that
2310    /// match `pred`. The matched element is contained in the previous
2311    /// subslice as a terminator.
2312    ///
2313    /// # Examples
2314    ///
2315    /// ```
2316    /// let mut v = [10, 40, 30, 20, 60, 50];
2317    ///
2318    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2319    ///     let terminator_idx = group.len()-1;
2320    ///     group[terminator_idx] = 1;
2321    /// }
2322    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2323    /// ```
2324    #[stable(feature = "split_inclusive", since = "1.51.0")]
2325    #[inline]
2326    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2327    where
2328        F: FnMut(&T) -> bool,
2329    {
2330        SplitInclusiveMut::new(self, pred)
2331    }
2332
2333    /// Returns an iterator over subslices separated by elements that match
2334    /// `pred`, starting at the end of the slice and working backwards.
2335    /// The matched element is not contained in the subslices.
2336    ///
2337    /// # Examples
2338    ///
2339    /// ```
2340    /// let slice = [11, 22, 33, 0, 44, 55];
2341    /// let mut iter = slice.rsplit(|num| *num == 0);
2342    ///
2343    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2344    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2345    /// assert_eq!(iter.next(), None);
2346    /// ```
2347    ///
2348    /// As with `split()`, if the first or last element is matched, an empty
2349    /// slice will be the first (or last) item returned by the iterator.
2350    ///
2351    /// ```
2352    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2353    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2354    /// assert_eq!(it.next().unwrap(), &[]);
2355    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2356    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2357    /// assert_eq!(it.next().unwrap(), &[]);
2358    /// assert_eq!(it.next(), None);
2359    /// ```
2360    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2361    #[inline]
2362    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2363    where
2364        F: FnMut(&T) -> bool,
2365    {
2366        RSplit::new(self, pred)
2367    }
2368
2369    /// Returns an iterator over mutable subslices separated by elements that
2370    /// match `pred`, starting at the end of the slice and working
2371    /// backwards. The matched element is not contained in the subslices.
2372    ///
2373    /// # Examples
2374    ///
2375    /// ```
2376    /// let mut v = [100, 400, 300, 200, 600, 500];
2377    ///
2378    /// let mut count = 0;
2379    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2380    ///     count += 1;
2381    ///     group[0] = count;
2382    /// }
2383    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2384    /// ```
2385    ///
2386    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2387    #[inline]
2388    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2389    where
2390        F: FnMut(&T) -> bool,
2391    {
2392        RSplitMut::new(self, pred)
2393    }
2394
2395    /// Returns an iterator over subslices separated by elements that match
2396    /// `pred`, limited to returning at most `n` items. The matched element is
2397    /// not contained in the subslices.
2398    ///
2399    /// The last element returned, if any, will contain the remainder of the
2400    /// slice.
2401    ///
2402    /// # Examples
2403    ///
2404    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2405    /// `[20, 60, 50]`):
2406    ///
2407    /// ```
2408    /// let v = [10, 40, 30, 20, 60, 50];
2409    ///
2410    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2411    ///     println!("{group:?}");
2412    /// }
2413    /// ```
2414    #[stable(feature = "rust1", since = "1.0.0")]
2415    #[inline]
2416    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2417    where
2418        F: FnMut(&T) -> bool,
2419    {
2420        SplitN::new(self.split(pred), n)
2421    }
2422
2423    /// Returns an iterator over mutable subslices separated by elements that match
2424    /// `pred`, limited to returning at most `n` items. The matched element is
2425    /// not contained in the subslices.
2426    ///
2427    /// The last element returned, if any, will contain the remainder of the
2428    /// slice.
2429    ///
2430    /// # Examples
2431    ///
2432    /// ```
2433    /// let mut v = [10, 40, 30, 20, 60, 50];
2434    ///
2435    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2436    ///     group[0] = 1;
2437    /// }
2438    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2439    /// ```
2440    #[stable(feature = "rust1", since = "1.0.0")]
2441    #[inline]
2442    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2443    where
2444        F: FnMut(&T) -> bool,
2445    {
2446        SplitNMut::new(self.split_mut(pred), n)
2447    }
2448
2449    /// Returns an iterator over subslices separated by elements that match
2450    /// `pred` limited to returning at most `n` items. This starts at the end of
2451    /// the slice and works backwards. The matched element is not contained in
2452    /// the subslices.
2453    ///
2454    /// The last element returned, if any, will contain the remainder of the
2455    /// slice.
2456    ///
2457    /// # Examples
2458    ///
2459    /// Print the slice split once, starting from the end, by numbers divisible
2460    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2461    ///
2462    /// ```
2463    /// let v = [10, 40, 30, 20, 60, 50];
2464    ///
2465    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2466    ///     println!("{group:?}");
2467    /// }
2468    /// ```
2469    #[stable(feature = "rust1", since = "1.0.0")]
2470    #[inline]
2471    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2472    where
2473        F: FnMut(&T) -> bool,
2474    {
2475        RSplitN::new(self.rsplit(pred), n)
2476    }
2477
2478    /// Returns an iterator over subslices separated by elements that match
2479    /// `pred` limited to returning at most `n` items. This starts at the end of
2480    /// the slice and works backwards. The matched element is not contained in
2481    /// the subslices.
2482    ///
2483    /// The last element returned, if any, will contain the remainder of the
2484    /// slice.
2485    ///
2486    /// # Examples
2487    ///
2488    /// ```
2489    /// let mut s = [10, 40, 30, 20, 60, 50];
2490    ///
2491    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2492    ///     group[0] = 1;
2493    /// }
2494    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2495    /// ```
2496    #[stable(feature = "rust1", since = "1.0.0")]
2497    #[inline]
2498    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2499    where
2500        F: FnMut(&T) -> bool,
2501    {
2502        RSplitNMut::new(self.rsplit_mut(pred), n)
2503    }
2504
2505    /// Splits the slice on the first element that matches the specified
2506    /// predicate.
2507    ///
2508    /// If any matching elements are present in the slice, returns the prefix
2509    /// before the match and suffix after. The matching element itself is not
2510    /// included. If no elements match, returns `None`.
2511    ///
2512    /// # Examples
2513    ///
2514    /// ```
2515    /// #![feature(slice_split_once)]
2516    /// let s = [1, 2, 3, 2, 4];
2517    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2518    ///     &[1][..],
2519    ///     &[3, 2, 4][..]
2520    /// )));
2521    /// assert_eq!(s.split_once(|&x| x == 0), None);
2522    /// ```
2523    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2524    #[inline]
2525    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2526    where
2527        F: FnMut(&T) -> bool,
2528    {
2529        let index = self.iter().position(pred)?;
2530        Some((&self[..index], &self[index + 1..]))
2531    }
2532
2533    /// Splits the slice on the last element that matches the specified
2534    /// predicate.
2535    ///
2536    /// If any matching elements are present in the slice, returns the prefix
2537    /// before the match and suffix after. The matching element itself is not
2538    /// included. If no elements match, returns `None`.
2539    ///
2540    /// # Examples
2541    ///
2542    /// ```
2543    /// #![feature(slice_split_once)]
2544    /// let s = [1, 2, 3, 2, 4];
2545    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2546    ///     &[1, 2, 3][..],
2547    ///     &[4][..]
2548    /// )));
2549    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2550    /// ```
2551    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2552    #[inline]
2553    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2554    where
2555        F: FnMut(&T) -> bool,
2556    {
2557        let index = self.iter().rposition(pred)?;
2558        Some((&self[..index], &self[index + 1..]))
2559    }
2560
2561    /// Returns `true` if the slice contains an element with the given value.
2562    ///
2563    /// This operation is *O*(*n*).
2564    ///
2565    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2566    ///
2567    /// [`binary_search`]: slice::binary_search
2568    ///
2569    /// # Examples
2570    ///
2571    /// ```
2572    /// let v = [10, 40, 30];
2573    /// assert!(v.contains(&30));
2574    /// assert!(!v.contains(&50));
2575    /// ```
2576    ///
2577    /// If you do not have a `&T`, but some other value that you can compare
2578    /// with one (for example, `String` implements `PartialEq<str>`), you can
2579    /// use `iter().any`:
2580    ///
2581    /// ```
2582    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2583    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2584    /// assert!(!v.iter().any(|e| e == "hi"));
2585    /// ```
2586    #[stable(feature = "rust1", since = "1.0.0")]
2587    #[inline]
2588    #[must_use]
2589    pub fn contains(&self, x: &T) -> bool
2590    where
2591        T: PartialEq,
2592    {
2593        cmp::SliceContains::slice_contains(x, self)
2594    }
2595
2596    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2597    ///
2598    /// # Examples
2599    ///
2600    /// ```
2601    /// let v = [10, 40, 30];
2602    /// assert!(v.starts_with(&[10]));
2603    /// assert!(v.starts_with(&[10, 40]));
2604    /// assert!(v.starts_with(&v));
2605    /// assert!(!v.starts_with(&[50]));
2606    /// assert!(!v.starts_with(&[10, 50]));
2607    /// ```
2608    ///
2609    /// Always returns `true` if `needle` is an empty slice:
2610    ///
2611    /// ```
2612    /// let v = &[10, 40, 30];
2613    /// assert!(v.starts_with(&[]));
2614    /// let v: &[u8] = &[];
2615    /// assert!(v.starts_with(&[]));
2616    /// ```
2617    #[stable(feature = "rust1", since = "1.0.0")]
2618    #[must_use]
2619    pub fn starts_with(&self, needle: &[T]) -> bool
2620    where
2621        T: PartialEq,
2622    {
2623        let n = needle.len();
2624        self.len() >= n && needle == &self[..n]
2625    }
2626
2627    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2628    ///
2629    /// # Examples
2630    ///
2631    /// ```
2632    /// let v = [10, 40, 30];
2633    /// assert!(v.ends_with(&[30]));
2634    /// assert!(v.ends_with(&[40, 30]));
2635    /// assert!(v.ends_with(&v));
2636    /// assert!(!v.ends_with(&[50]));
2637    /// assert!(!v.ends_with(&[50, 30]));
2638    /// ```
2639    ///
2640    /// Always returns `true` if `needle` is an empty slice:
2641    ///
2642    /// ```
2643    /// let v = &[10, 40, 30];
2644    /// assert!(v.ends_with(&[]));
2645    /// let v: &[u8] = &[];
2646    /// assert!(v.ends_with(&[]));
2647    /// ```
2648    #[stable(feature = "rust1", since = "1.0.0")]
2649    #[must_use]
2650    pub fn ends_with(&self, needle: &[T]) -> bool
2651    where
2652        T: PartialEq,
2653    {
2654        let (m, n) = (self.len(), needle.len());
2655        m >= n && needle == &self[m - n..]
2656    }
2657
2658    /// Returns a subslice with the prefix removed.
2659    ///
2660    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2661    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2662    /// original slice, returns an empty slice.
2663    ///
2664    /// If the slice does not start with `prefix`, returns `None`.
2665    ///
2666    /// # Examples
2667    ///
2668    /// ```
2669    /// let v = &[10, 40, 30];
2670    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2671    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2672    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2673    /// assert_eq!(v.strip_prefix(&[50]), None);
2674    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2675    ///
2676    /// let prefix : &str = "he";
2677    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2678    ///            Some(b"llo".as_ref()));
2679    /// ```
2680    #[must_use = "returns the subslice without modifying the original"]
2681    #[stable(feature = "slice_strip", since = "1.51.0")]
2682    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2683    where
2684        T: PartialEq,
2685    {
2686        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2687        let prefix = prefix.as_slice();
2688        let n = prefix.len();
2689        if n <= self.len() {
2690            let (head, tail) = self.split_at(n);
2691            if head == prefix {
2692                return Some(tail);
2693            }
2694        }
2695        None
2696    }
2697
2698    /// Returns a subslice with the suffix removed.
2699    ///
2700    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2701    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2702    /// original slice, returns an empty slice.
2703    ///
2704    /// If the slice does not end with `suffix`, returns `None`.
2705    ///
2706    /// # Examples
2707    ///
2708    /// ```
2709    /// let v = &[10, 40, 30];
2710    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2711    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2712    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2713    /// assert_eq!(v.strip_suffix(&[50]), None);
2714    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2715    /// ```
2716    #[must_use = "returns the subslice without modifying the original"]
2717    #[stable(feature = "slice_strip", since = "1.51.0")]
2718    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2719    where
2720        T: PartialEq,
2721    {
2722        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2723        let suffix = suffix.as_slice();
2724        let (len, n) = (self.len(), suffix.len());
2725        if n <= len {
2726            let (head, tail) = self.split_at(len - n);
2727            if tail == suffix {
2728                return Some(head);
2729            }
2730        }
2731        None
2732    }
2733
2734    /// Returns a subslice with the prefix and suffix removed.
2735    ///
2736    /// If the slice starts with `prefix` and ends with `suffix`, returns the subslice after the
2737    /// prefix and before the suffix, wrapped in `Some`.
2738    ///
2739    /// If the slice does not start with `prefix` or does not end with `suffix`, returns `None`.
2740    ///
2741    /// # Examples
2742    ///
2743    /// ```
2744    /// #![feature(strip_circumfix)]
2745    ///
2746    /// let v = &[10, 50, 40, 30];
2747    /// assert_eq!(v.strip_circumfix(&[10], &[30]), Some(&[50, 40][..]));
2748    /// assert_eq!(v.strip_circumfix(&[10], &[40, 30]), Some(&[50][..]));
2749    /// assert_eq!(v.strip_circumfix(&[10, 50], &[40, 30]), Some(&[][..]));
2750    /// assert_eq!(v.strip_circumfix(&[50], &[30]), None);
2751    /// assert_eq!(v.strip_circumfix(&[10], &[40]), None);
2752    /// assert_eq!(v.strip_circumfix(&[], &[40, 30]), Some(&[10, 50][..]));
2753    /// assert_eq!(v.strip_circumfix(&[10, 50], &[]), Some(&[40, 30][..]));
2754    /// ```
2755    #[must_use = "returns the subslice without modifying the original"]
2756    #[unstable(feature = "strip_circumfix", issue = "147946")]
2757    pub fn strip_circumfix<S, P>(&self, prefix: &P, suffix: &S) -> Option<&[T]>
2758    where
2759        T: PartialEq,
2760        S: SlicePattern<Item = T> + ?Sized,
2761        P: SlicePattern<Item = T> + ?Sized,
2762    {
2763        self.strip_prefix(prefix)?.strip_suffix(suffix)
2764    }
2765
2766    /// Returns a subslice with the optional prefix removed.
2767    ///
2768    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2769    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2770    /// If `prefix` is equal to the original slice, returns an empty slice.
2771    ///
2772    /// # Examples
2773    ///
2774    /// ```
2775    /// #![feature(trim_prefix_suffix)]
2776    ///
2777    /// let v = &[10, 40, 30];
2778    ///
2779    /// // Prefix present - removes it
2780    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2781    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2782    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2783    ///
2784    /// // Prefix absent - returns original slice
2785    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2786    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2787    ///
2788    /// let prefix : &str = "he";
2789    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2790    /// ```
2791    #[must_use = "returns the subslice without modifying the original"]
2792    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2793    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2794    where
2795        T: PartialEq,
2796    {
2797        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2798        let prefix = prefix.as_slice();
2799        let n = prefix.len();
2800        if n <= self.len() {
2801            let (head, tail) = self.split_at(n);
2802            if head == prefix {
2803                return tail;
2804            }
2805        }
2806        self
2807    }
2808
2809    /// Returns a subslice with the optional suffix removed.
2810    ///
2811    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2812    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2813    /// If `suffix` is equal to the original slice, returns an empty slice.
2814    ///
2815    /// # Examples
2816    ///
2817    /// ```
2818    /// #![feature(trim_prefix_suffix)]
2819    ///
2820    /// let v = &[10, 40, 30];
2821    ///
2822    /// // Suffix present - removes it
2823    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2824    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2825    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2826    ///
2827    /// // Suffix absent - returns original slice
2828    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2829    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2830    /// ```
2831    #[must_use = "returns the subslice without modifying the original"]
2832    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2833    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2834    where
2835        T: PartialEq,
2836    {
2837        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2838        let suffix = suffix.as_slice();
2839        let (len, n) = (self.len(), suffix.len());
2840        if n <= len {
2841            let (head, tail) = self.split_at(len - n);
2842            if tail == suffix {
2843                return head;
2844            }
2845        }
2846        self
2847    }
2848
2849    /// Binary searches this slice for a given element.
2850    /// If the slice is not sorted, the returned result is unspecified and
2851    /// meaningless.
2852    ///
2853    /// If the value is found then [`Result::Ok`] is returned, containing the
2854    /// index of the matching element. If there are multiple matches, then any
2855    /// one of the matches could be returned. The index is chosen
2856    /// deterministically, but is subject to change in future versions of Rust.
2857    /// If the value is not found then [`Result::Err`] is returned, containing
2858    /// the index where a matching element could be inserted while maintaining
2859    /// sorted order.
2860    ///
2861    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2862    ///
2863    /// [`binary_search_by`]: slice::binary_search_by
2864    /// [`binary_search_by_key`]: slice::binary_search_by_key
2865    /// [`partition_point`]: slice::partition_point
2866    ///
2867    /// # Examples
2868    ///
2869    /// Looks up a series of four elements. The first is found, with a
2870    /// uniquely determined position; the second and third are not
2871    /// found; the fourth could match any position in `[1, 4]`.
2872    ///
2873    /// ```
2874    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2875    ///
2876    /// assert_eq!(s.binary_search(&13),  Ok(9));
2877    /// assert_eq!(s.binary_search(&4),   Err(7));
2878    /// assert_eq!(s.binary_search(&100), Err(13));
2879    /// let r = s.binary_search(&1);
2880    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2881    /// ```
2882    ///
2883    /// If you want to find that whole *range* of matching items, rather than
2884    /// an arbitrary matching one, that can be done using [`partition_point`]:
2885    /// ```
2886    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2887    ///
2888    /// let low = s.partition_point(|x| x < &1);
2889    /// assert_eq!(low, 1);
2890    /// let high = s.partition_point(|x| x <= &1);
2891    /// assert_eq!(high, 5);
2892    /// let r = s.binary_search(&1);
2893    /// assert!((low..high).contains(&r.unwrap()));
2894    ///
2895    /// assert!(s[..low].iter().all(|&x| x < 1));
2896    /// assert!(s[low..high].iter().all(|&x| x == 1));
2897    /// assert!(s[high..].iter().all(|&x| x > 1));
2898    ///
2899    /// // For something not found, the "range" of equal items is empty
2900    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2901    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2902    /// assert_eq!(s.binary_search(&11), Err(9));
2903    /// ```
2904    ///
2905    /// If you want to insert an item to a sorted vector, while maintaining
2906    /// sort order, consider using [`partition_point`]:
2907    ///
2908    /// ```
2909    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2910    /// let num = 42;
2911    /// let idx = s.partition_point(|&x| x <= num);
2912    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2913    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2914    /// // to shift less elements.
2915    /// s.insert(idx, num);
2916    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2917    /// ```
2918    #[stable(feature = "rust1", since = "1.0.0")]
2919    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2920    where
2921        T: Ord,
2922    {
2923        self.binary_search_by(|p| p.cmp(x))
2924    }
2925
2926    /// Binary searches this slice with a comparator function.
2927    ///
2928    /// The comparator function should return an order code that indicates
2929    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2930    /// target.
2931    /// If the slice is not sorted or if the comparator function does not
2932    /// implement an order consistent with the sort order of the underlying
2933    /// slice, the returned result is unspecified and meaningless.
2934    ///
2935    /// If the value is found then [`Result::Ok`] is returned, containing the
2936    /// index of the matching element. If there are multiple matches, then any
2937    /// one of the matches could be returned. The index is chosen
2938    /// deterministically, but is subject to change in future versions of Rust.
2939    /// If the value is not found then [`Result::Err`] is returned, containing
2940    /// the index where a matching element could be inserted while maintaining
2941    /// sorted order.
2942    ///
2943    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2944    ///
2945    /// [`binary_search`]: slice::binary_search
2946    /// [`binary_search_by_key`]: slice::binary_search_by_key
2947    /// [`partition_point`]: slice::partition_point
2948    ///
2949    /// # Examples
2950    ///
2951    /// Looks up a series of four elements. The first is found, with a
2952    /// uniquely determined position; the second and third are not
2953    /// found; the fourth could match any position in `[1, 4]`.
2954    ///
2955    /// ```
2956    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2957    ///
2958    /// let seek = 13;
2959    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2960    /// let seek = 4;
2961    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2962    /// let seek = 100;
2963    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2964    /// let seek = 1;
2965    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2966    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2967    /// ```
2968    #[stable(feature = "rust1", since = "1.0.0")]
2969    #[inline]
2970    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2971    where
2972        F: FnMut(&'a T) -> Ordering,
2973    {
2974        let mut size = self.len();
2975        if size == 0 {
2976            return Err(0);
2977        }
2978        let mut base = 0usize;
2979
2980        // This loop intentionally doesn't have an early exit if the comparison
2981        // returns Equal. We want the number of loop iterations to depend *only*
2982        // on the size of the input slice so that the CPU can reliably predict
2983        // the loop count.
2984        while size > 1 {
2985            let half = size / 2;
2986            let mid = base + half;
2987
2988            // SAFETY: the call is made safe by the following invariants:
2989            // - `mid >= 0`: by definition
2990            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2991            let cmp = f(unsafe { self.get_unchecked(mid) });
2992
2993            // Binary search interacts poorly with branch prediction, so force
2994            // the compiler to use conditional moves if supported by the target
2995            // architecture.
2996            base = hint::select_unpredictable(cmp == Greater, base, mid);
2997
2998            // This is imprecise in the case where `size` is odd and the
2999            // comparison returns Greater: the mid element still gets included
3000            // by `size` even though it's known to be larger than the element
3001            // being searched for.
3002            //
3003            // This is fine though: we gain more performance by keeping the
3004            // loop iteration count invariant (and thus predictable) than we
3005            // lose from considering one additional element.
3006            size -= half;
3007        }
3008
3009        // SAFETY: base is always in [0, size) because base <= mid.
3010        let cmp = f(unsafe { self.get_unchecked(base) });
3011        if cmp == Equal {
3012            // SAFETY: same as the `get_unchecked` above.
3013            unsafe { hint::assert_unchecked(base < self.len()) };
3014            Ok(base)
3015        } else {
3016            let result = base + (cmp == Less) as usize;
3017            // SAFETY: same as the `get_unchecked` above.
3018            // Note that this is `<=`, unlike the assume in the `Ok` path.
3019            unsafe { hint::assert_unchecked(result <= self.len()) };
3020            Err(result)
3021        }
3022    }
3023
3024    /// Binary searches this slice with a key extraction function.
3025    ///
3026    /// Assumes that the slice is sorted by the key, for instance with
3027    /// [`sort_by_key`] using the same key extraction function.
3028    /// If the slice is not sorted by the key, the returned result is
3029    /// unspecified and meaningless.
3030    ///
3031    /// If the value is found then [`Result::Ok`] is returned, containing the
3032    /// index of the matching element. If there are multiple matches, then any
3033    /// one of the matches could be returned. The index is chosen
3034    /// deterministically, but is subject to change in future versions of Rust.
3035    /// If the value is not found then [`Result::Err`] is returned, containing
3036    /// the index where a matching element could be inserted while maintaining
3037    /// sorted order.
3038    ///
3039    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3040    ///
3041    /// [`sort_by_key`]: slice::sort_by_key
3042    /// [`binary_search`]: slice::binary_search
3043    /// [`binary_search_by`]: slice::binary_search_by
3044    /// [`partition_point`]: slice::partition_point
3045    ///
3046    /// # Examples
3047    ///
3048    /// Looks up a series of four elements in a slice of pairs sorted by
3049    /// their second elements. The first is found, with a uniquely
3050    /// determined position; the second and third are not found; the
3051    /// fourth could match any position in `[1, 4]`.
3052    ///
3053    /// ```
3054    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3055    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3056    ///          (1, 21), (2, 34), (4, 55)];
3057    ///
3058    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3059    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3060    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3061    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3062    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3063    /// ```
3064    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3065    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3066    // This breaks links when slice is displayed in core, but changing it to use relative links
3067    // would break when the item is re-exported. So allow the core links to be broken for now.
3068    #[allow(rustdoc::broken_intra_doc_links)]
3069    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3070    #[inline]
3071    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3072    where
3073        F: FnMut(&'a T) -> B,
3074        B: Ord,
3075    {
3076        self.binary_search_by(|k| f(k).cmp(b))
3077    }
3078
3079    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3080    ///
3081    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3082    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3083    ///
3084    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3085    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3086    /// is unspecified. See also the note on panicking below.
3087    ///
3088    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3089    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3090    /// examples see the [`Ord`] documentation.
3091    ///
3092    ///
3093    /// All original elements will remain in the slice and any possible modifications via interior
3094    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3095    ///
3096    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3097    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3098    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3099    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3100    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3101    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3102    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3103    /// a.partial_cmp(b).unwrap())`.
3104    ///
3105    /// # Current implementation
3106    ///
3107    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3108    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3109    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3110    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3111    ///
3112    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3113    /// slice is partially sorted.
3114    ///
3115    /// # Panics
3116    ///
3117    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3118    /// the [`Ord`] implementation panics.
3119    ///
3120    /// # Examples
3121    ///
3122    /// ```
3123    /// let mut v = [4, -5, 1, -3, 2];
3124    ///
3125    /// v.sort_unstable();
3126    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3127    /// ```
3128    ///
3129    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3130    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3131    #[stable(feature = "sort_unstable", since = "1.20.0")]
3132    #[inline]
3133    pub fn sort_unstable(&mut self)
3134    where
3135        T: Ord,
3136    {
3137        sort::unstable::sort(self, &mut T::lt);
3138    }
3139
3140    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3141    /// initial order of equal elements.
3142    ///
3143    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3144    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3145    ///
3146    /// If the comparison function `compare` does not implement a [total order], the function
3147    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3148    /// is unspecified. See also the note on panicking below.
3149    ///
3150    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3151    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3152    /// examples see the [`Ord`] documentation.
3153    ///
3154    /// All original elements will remain in the slice and any possible modifications via interior
3155    /// mutability are observed in the input. Same is true if `compare` panics.
3156    ///
3157    /// # Current implementation
3158    ///
3159    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3160    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3161    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3162    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3163    ///
3164    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3165    /// slice is partially sorted.
3166    ///
3167    /// # Panics
3168    ///
3169    /// May panic if the `compare` does not implement a [total order], or if
3170    /// the `compare` itself panics.
3171    ///
3172    /// # Examples
3173    ///
3174    /// ```
3175    /// let mut v = [4, -5, 1, -3, 2];
3176    /// v.sort_unstable_by(|a, b| a.cmp(b));
3177    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3178    ///
3179    /// // reverse sorting
3180    /// v.sort_unstable_by(|a, b| b.cmp(a));
3181    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3182    /// ```
3183    ///
3184    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3185    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3186    #[stable(feature = "sort_unstable", since = "1.20.0")]
3187    #[inline]
3188    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3189    where
3190        F: FnMut(&T, &T) -> Ordering,
3191    {
3192        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3193    }
3194
3195    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3196    /// the initial order of equal elements.
3197    ///
3198    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3199    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3200    ///
3201    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3202    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3203    /// is unspecified. See also the note on panicking below.
3204    ///
3205    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3206    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3207    /// examples see the [`Ord`] documentation.
3208    ///
3209    /// All original elements will remain in the slice and any possible modifications via interior
3210    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3211    ///
3212    /// # Current implementation
3213    ///
3214    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3215    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3216    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3217    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3218    ///
3219    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3220    /// slice is partially sorted.
3221    ///
3222    /// # Panics
3223    ///
3224    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3225    /// the [`Ord`] implementation panics.
3226    ///
3227    /// # Examples
3228    ///
3229    /// ```
3230    /// let mut v = [4i32, -5, 1, -3, 2];
3231    ///
3232    /// v.sort_unstable_by_key(|k| k.abs());
3233    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3234    /// ```
3235    ///
3236    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3237    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3238    #[stable(feature = "sort_unstable", since = "1.20.0")]
3239    #[inline]
3240    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3241    where
3242        F: FnMut(&T) -> K,
3243        K: Ord,
3244    {
3245        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3246    }
3247
3248    /// Partially sorts the slice in ascending order **without** preserving the initial order of equal elements.
3249    ///
3250    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3251    ///
3252    /// 1. Every element in `self[..start]` is smaller than or equal to
3253    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3254    /// 3. Every element in `self[end..]`.
3255    ///
3256    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3257    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3258    ///
3259    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3260    /// where *n* is the length of the slice and *k* is the length of the specified range.
3261    ///
3262    /// See the documentation of [`sort_unstable`] for implementation notes.
3263    ///
3264    /// # Panics
3265    ///
3266    /// May panic if the implementation of [`Ord`] for `T` does not implement a total order, or if
3267    /// the [`Ord`] implementation panics, or if the specified range is out of bounds.
3268    ///
3269    /// # Examples
3270    ///
3271    /// ```
3272    /// #![feature(slice_partial_sort_unstable)]
3273    ///
3274    /// let mut v = [4, -5, 1, -3, 2];
3275    ///
3276    /// // empty range at the beginning, nothing changed
3277    /// v.partial_sort_unstable(0..0);
3278    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3279    ///
3280    /// // empty range in the middle, partitioning the slice
3281    /// v.partial_sort_unstable(2..2);
3282    /// for i in 0..2 {
3283    ///    assert!(v[i] <= v[2]);
3284    /// }
3285    /// for i in 3..v.len() {
3286    ///   assert!(v[2] <= v[i]);
3287    /// }
3288    ///
3289    /// // single element range, same as select_nth_unstable
3290    /// v.partial_sort_unstable(2..3);
3291    /// for i in 0..2 {
3292    ///    assert!(v[i] <= v[2]);
3293    /// }
3294    /// for i in 3..v.len() {
3295    ///   assert!(v[2] <= v[i]);
3296    /// }
3297    ///
3298    /// // partial sort a subrange
3299    /// v.partial_sort_unstable(1..4);
3300    /// assert_eq!(&v[1..4], [-3, 1, 2]);
3301    ///
3302    /// // partial sort the whole range, same as sort_unstable
3303    /// v.partial_sort_unstable(..);
3304    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3305    /// ```
3306    ///
3307    /// [`sort_unstable`]: slice::sort_unstable
3308    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3309    #[inline]
3310    pub fn partial_sort_unstable<R>(&mut self, range: R)
3311    where
3312        T: Ord,
3313        R: RangeBounds<usize>,
3314    {
3315        sort::unstable::partial_sort(self, range, T::lt);
3316    }
3317
3318    /// Partially sorts the slice in ascending order with a comparison function, **without**
3319    /// preserving the initial order of equal elements.
3320    ///
3321    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3322    ///
3323    /// 1. Every element in `self[..start]` is smaller than or equal to
3324    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3325    /// 3. Every element in `self[end..]`.
3326    ///
3327    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3328    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3329    ///
3330    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3331    /// where *n* is the length of the slice and *k* is the length of the specified range.
3332    ///
3333    /// See the documentation of [`sort_unstable_by`] for implementation notes.
3334    ///
3335    /// # Panics
3336    ///
3337    /// May panic if the `compare` does not implement a total order, or if
3338    /// the `compare` itself panics, or if the specified range is out of bounds.
3339    ///
3340    /// # Examples
3341    ///
3342    /// ```
3343    /// #![feature(slice_partial_sort_unstable)]
3344    ///
3345    /// let mut v = [4, -5, 1, -3, 2];
3346    ///
3347    /// // empty range at the beginning, nothing changed
3348    /// v.partial_sort_unstable_by(0..0, |a, b| b.cmp(a));
3349    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3350    ///
3351    /// // empty range in the middle, partitioning the slice
3352    /// v.partial_sort_unstable_by(2..2, |a, b| b.cmp(a));
3353    /// for i in 0..2 {
3354    ///    assert!(v[i] >= v[2]);
3355    /// }
3356    /// for i in 3..v.len() {
3357    ///   assert!(v[2] >= v[i]);
3358    /// }
3359    ///
3360    /// // single element range, same as select_nth_unstable
3361    /// v.partial_sort_unstable_by(2..3, |a, b| b.cmp(a));
3362    /// for i in 0..2 {
3363    ///    assert!(v[i] >= v[2]);
3364    /// }
3365    /// for i in 3..v.len() {
3366    ///   assert!(v[2] >= v[i]);
3367    /// }
3368    ///
3369    /// // partial sort a subrange
3370    /// v.partial_sort_unstable_by(1..4, |a, b| b.cmp(a));
3371    /// assert_eq!(&v[1..4], [2, 1, -3]);
3372    ///
3373    /// // partial sort the whole range, same as sort_unstable
3374    /// v.partial_sort_unstable_by(.., |a, b| b.cmp(a));
3375    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3376    /// ```
3377    ///
3378    /// [`sort_unstable_by`]: slice::sort_unstable_by
3379    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3380    #[inline]
3381    pub fn partial_sort_unstable_by<F, R>(&mut self, range: R, mut compare: F)
3382    where
3383        F: FnMut(&T, &T) -> Ordering,
3384        R: RangeBounds<usize>,
3385    {
3386        sort::unstable::partial_sort(self, range, |a, b| compare(a, b) == Less);
3387    }
3388
3389    /// Partially sorts the slice in ascending order with a key extraction function, **without**
3390    /// preserving the initial order of equal elements.
3391    ///
3392    /// Upon completion, for the specified range `start..end`, it's guaranteed that:
3393    ///
3394    /// 1. Every element in `self[..start]` is smaller than or equal to
3395    /// 2. Every element in `self[start..end]`, which is sorted, and smaller than or equal to
3396    /// 3. Every element in `self[end..]`.
3397    ///
3398    /// This partial sort is unstable, meaning it may reorder equal elements in the specified range.
3399    /// It may reorder elements outside the specified range as well, but the guarantees above still hold.
3400    ///
3401    /// This partial sort is in-place (i.e., does not allocate), and *O*(*n* + *k* \* log(*k*)) worst-case,
3402    /// where *n* is the length of the slice and *k* is the length of the specified range.
3403    ///
3404    /// See the documentation of [`sort_unstable_by_key`] for implementation notes.
3405    ///
3406    /// # Panics
3407    ///
3408    /// May panic if the implementation of [`Ord`] for `K` does not implement a total order, or if
3409    /// the [`Ord`] implementation panics, or if the specified range is out of bounds.
3410    ///
3411    /// # Examples
3412    ///
3413    /// ```
3414    /// #![feature(slice_partial_sort_unstable)]
3415    ///
3416    /// let mut v = [4i32, -5, 1, -3, 2];
3417    ///
3418    /// // empty range at the beginning, nothing changed
3419    /// v.partial_sort_unstable_by_key(0..0, |k| k.abs());
3420    /// assert_eq!(v, [4, -5, 1, -3, 2]);
3421    ///
3422    /// // empty range in the middle, partitioning the slice
3423    /// v.partial_sort_unstable_by_key(2..2, |k| k.abs());
3424    /// for i in 0..2 {
3425    ///    assert!(v[i].abs() <= v[2].abs());
3426    /// }
3427    /// for i in 3..v.len() {
3428    ///   assert!(v[2].abs() <= v[i].abs());
3429    /// }
3430    ///
3431    /// // single element range, same as select_nth_unstable
3432    /// v.partial_sort_unstable_by_key(2..3, |k| k.abs());
3433    /// for i in 0..2 {
3434    ///    assert!(v[i].abs() <= v[2].abs());
3435    /// }
3436    /// for i in 3..v.len() {
3437    ///   assert!(v[2].abs() <= v[i].abs());
3438    /// }
3439    ///
3440    /// // partial sort a subrange
3441    /// v.partial_sort_unstable_by_key(1..4, |k| k.abs());
3442    /// assert_eq!(&v[1..4], [2, -3, 4]);
3443    ///
3444    /// // partial sort the whole range, same as sort_unstable
3445    /// v.partial_sort_unstable_by_key(.., |k| k.abs());
3446    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3447    /// ```
3448    ///
3449    /// [`sort_unstable_by_key`]: slice::sort_unstable_by_key
3450    #[unstable(feature = "slice_partial_sort_unstable", issue = "149046")]
3451    #[inline]
3452    pub fn partial_sort_unstable_by_key<K, F, R>(&mut self, range: R, mut f: F)
3453    where
3454        F: FnMut(&T) -> K,
3455        K: Ord,
3456        R: RangeBounds<usize>,
3457    {
3458        sort::unstable::partial_sort(self, range, |a, b| f(a).lt(&f(b)));
3459    }
3460
3461    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3462    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3463    /// it.
3464    ///
3465    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3466    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3467    /// function is also known as "kth element" in other libraries.
3468    ///
3469    /// Returns a triple that partitions the reordered slice:
3470    ///
3471    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3472    ///
3473    /// * The element at `index`.
3474    ///
3475    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3476    ///
3477    /// # Current implementation
3478    ///
3479    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3480    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3481    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3482    /// for all inputs.
3483    ///
3484    /// [`sort_unstable`]: slice::sort_unstable
3485    ///
3486    /// # Panics
3487    ///
3488    /// Panics when `index >= len()`, and so always panics on empty slices.
3489    ///
3490    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3491    ///
3492    /// # Examples
3493    ///
3494    /// ```
3495    /// let mut v = [-5i32, 4, 2, -3, 1];
3496    ///
3497    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3498    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3499    ///
3500    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3501    /// assert_eq!(median, &mut 1);
3502    /// assert!(greater == [4, 2] || greater == [2, 4]);
3503    ///
3504    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3505    /// // about the specified index.
3506    /// assert!(v == [-3, -5, 1, 2, 4] ||
3507    ///         v == [-5, -3, 1, 2, 4] ||
3508    ///         v == [-3, -5, 1, 4, 2] ||
3509    ///         v == [-5, -3, 1, 4, 2]);
3510    /// ```
3511    ///
3512    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3513    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3514    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3515    #[inline]
3516    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3517    where
3518        T: Ord,
3519    {
3520        sort::select::partition_at_index(self, index, T::lt)
3521    }
3522
3523    /// Reorders the slice with a comparator function such that the element at `index` is at a
3524    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3525    /// elements after will be `>=` to it, according to the comparator function.
3526    ///
3527    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3528    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3529    /// function is also known as "kth element" in other libraries.
3530    ///
3531    /// Returns a triple partitioning the reordered slice:
3532    ///
3533    /// * The unsorted subslice before `index`, whose elements all satisfy
3534    ///   `compare(x, self[index]).is_le()`.
3535    ///
3536    /// * The element at `index`.
3537    ///
3538    /// * The unsorted subslice after `index`, whose elements all satisfy
3539    ///   `compare(x, self[index]).is_ge()`.
3540    ///
3541    /// # Current implementation
3542    ///
3543    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3544    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3545    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3546    /// for all inputs.
3547    ///
3548    /// [`sort_unstable`]: slice::sort_unstable
3549    ///
3550    /// # Panics
3551    ///
3552    /// Panics when `index >= len()`, and so always panics on empty slices.
3553    ///
3554    /// May panic if `compare` does not implement a [total order].
3555    ///
3556    /// # Examples
3557    ///
3558    /// ```
3559    /// let mut v = [-5i32, 4, 2, -3, 1];
3560    ///
3561    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3562    /// // a reversed comparator.
3563    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3564    ///
3565    /// assert!(before == [4, 2] || before == [2, 4]);
3566    /// assert_eq!(median, &mut 1);
3567    /// assert!(after == [-3, -5] || after == [-5, -3]);
3568    ///
3569    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3570    /// // about the specified index.
3571    /// assert!(v == [2, 4, 1, -5, -3] ||
3572    ///         v == [2, 4, 1, -3, -5] ||
3573    ///         v == [4, 2, 1, -5, -3] ||
3574    ///         v == [4, 2, 1, -3, -5]);
3575    /// ```
3576    ///
3577    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3578    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3579    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3580    #[inline]
3581    pub fn select_nth_unstable_by<F>(
3582        &mut self,
3583        index: usize,
3584        mut compare: F,
3585    ) -> (&mut [T], &mut T, &mut [T])
3586    where
3587        F: FnMut(&T, &T) -> Ordering,
3588    {
3589        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3590    }
3591
3592    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3593    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3594    /// and all elements after will have keys `>=` to it.
3595    ///
3596    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3597    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3598    /// function is also known as "kth element" in other libraries.
3599    ///
3600    /// Returns a triple partitioning the reordered slice:
3601    ///
3602    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3603    ///
3604    /// * The element at `index`.
3605    ///
3606    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3607    ///
3608    /// # Current implementation
3609    ///
3610    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3611    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3612    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3613    /// for all inputs.
3614    ///
3615    /// [`sort_unstable`]: slice::sort_unstable
3616    ///
3617    /// # Panics
3618    ///
3619    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3620    ///
3621    /// May panic if `K: Ord` does not implement a total order.
3622    ///
3623    /// # Examples
3624    ///
3625    /// ```
3626    /// let mut v = [-5i32, 4, 1, -3, 2];
3627    ///
3628    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3629    /// // `>=` to it.
3630    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3631    ///
3632    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3633    /// assert_eq!(median, &mut -3);
3634    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3635    ///
3636    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3637    /// // about the specified index.
3638    /// assert!(v == [1, 2, -3, 4, -5] ||
3639    ///         v == [1, 2, -3, -5, 4] ||
3640    ///         v == [2, 1, -3, 4, -5] ||
3641    ///         v == [2, 1, -3, -5, 4]);
3642    /// ```
3643    ///
3644    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3645    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3646    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3647    #[inline]
3648    pub fn select_nth_unstable_by_key<K, F>(
3649        &mut self,
3650        index: usize,
3651        mut f: F,
3652    ) -> (&mut [T], &mut T, &mut [T])
3653    where
3654        F: FnMut(&T) -> K,
3655        K: Ord,
3656    {
3657        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3658    }
3659
3660    /// Moves all consecutive repeated elements to the end of the slice according to the
3661    /// [`PartialEq`] trait implementation.
3662    ///
3663    /// Returns two slices. The first contains no consecutive repeated elements.
3664    /// The second contains all the duplicates in no specified order.
3665    ///
3666    /// If the slice is sorted, the first returned slice contains no duplicates.
3667    ///
3668    /// # Examples
3669    ///
3670    /// ```
3671    /// #![feature(slice_partition_dedup)]
3672    ///
3673    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3674    ///
3675    /// let (dedup, duplicates) = slice.partition_dedup();
3676    ///
3677    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3678    /// assert_eq!(duplicates, [2, 3, 1]);
3679    /// ```
3680    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3681    #[inline]
3682    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3683    where
3684        T: PartialEq,
3685    {
3686        self.partition_dedup_by(|a, b| a == b)
3687    }
3688
3689    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3690    /// a given equality relation.
3691    ///
3692    /// Returns two slices. The first contains no consecutive repeated elements.
3693    /// The second contains all the duplicates in no specified order.
3694    ///
3695    /// The `same_bucket` function is passed references to two elements from the slice and
3696    /// must determine if the elements compare equal. The elements are passed in opposite order
3697    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3698    /// at the end of the slice.
3699    ///
3700    /// If the slice is sorted, the first returned slice contains no duplicates.
3701    ///
3702    /// # Examples
3703    ///
3704    /// ```
3705    /// #![feature(slice_partition_dedup)]
3706    ///
3707    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3708    ///
3709    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3710    ///
3711    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3712    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3713    /// ```
3714    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3715    #[inline]
3716    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3717    where
3718        F: FnMut(&mut T, &mut T) -> bool,
3719    {
3720        // Although we have a mutable reference to `self`, we cannot make
3721        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3722        // must ensure that the slice is in a valid state at all times.
3723        //
3724        // The way that we handle this is by using swaps; we iterate
3725        // over all the elements, swapping as we go so that at the end
3726        // the elements we wish to keep are in the front, and those we
3727        // wish to reject are at the back. We can then split the slice.
3728        // This operation is still `O(n)`.
3729        //
3730        // Example: We start in this state, where `r` represents "next
3731        // read" and `w` represents "next_write".
3732        //
3733        //           r
3734        //     +---+---+---+---+---+---+
3735        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3736        //     +---+---+---+---+---+---+
3737        //           w
3738        //
3739        // Comparing self[r] against self[w-1], this is not a duplicate, so
3740        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3741        // r and w, leaving us with:
3742        //
3743        //               r
3744        //     +---+---+---+---+---+---+
3745        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3746        //     +---+---+---+---+---+---+
3747        //               w
3748        //
3749        // Comparing self[r] against self[w-1], this value is a duplicate,
3750        // so we increment `r` but leave everything else unchanged:
3751        //
3752        //                   r
3753        //     +---+---+---+---+---+---+
3754        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3755        //     +---+---+---+---+---+---+
3756        //               w
3757        //
3758        // Comparing self[r] against self[w-1], this is not a duplicate,
3759        // so swap self[r] and self[w] and advance r and w:
3760        //
3761        //                       r
3762        //     +---+---+---+---+---+---+
3763        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3764        //     +---+---+---+---+---+---+
3765        //                   w
3766        //
3767        // Not a duplicate, repeat:
3768        //
3769        //                           r
3770        //     +---+---+---+---+---+---+
3771        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3772        //     +---+---+---+---+---+---+
3773        //                       w
3774        //
3775        // Duplicate, advance r. End of slice. Split at w.
3776
3777        let len = self.len();
3778        if len <= 1 {
3779            return (self, &mut []);
3780        }
3781
3782        let ptr = self.as_mut_ptr();
3783        let mut next_read: usize = 1;
3784        let mut next_write: usize = 1;
3785
3786        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3787        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3788        // one element before `ptr_write`, but `next_write` starts at 1, so
3789        // `prev_ptr_write` is never less than 0 and is inside the slice.
3790        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3791        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3792        // and `prev_ptr_write.offset(1)`.
3793        //
3794        // `next_write` is also incremented at most once per loop at most meaning
3795        // no element is skipped when it may need to be swapped.
3796        //
3797        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3798        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3799        // The explanation is simply that `next_read >= next_write` is always true,
3800        // thus `next_read > next_write - 1` is too.
3801        unsafe {
3802            // Avoid bounds checks by using raw pointers.
3803            while next_read < len {
3804                let ptr_read = ptr.add(next_read);
3805                let prev_ptr_write = ptr.add(next_write - 1);
3806                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3807                    if next_read != next_write {
3808                        let ptr_write = prev_ptr_write.add(1);
3809                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3810                    }
3811                    next_write += 1;
3812                }
3813                next_read += 1;
3814            }
3815        }
3816
3817        self.split_at_mut(next_write)
3818    }
3819
3820    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3821    /// to the same key.
3822    ///
3823    /// Returns two slices. The first contains no consecutive repeated elements.
3824    /// The second contains all the duplicates in no specified order.
3825    ///
3826    /// If the slice is sorted, the first returned slice contains no duplicates.
3827    ///
3828    /// # Examples
3829    ///
3830    /// ```
3831    /// #![feature(slice_partition_dedup)]
3832    ///
3833    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3834    ///
3835    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3836    ///
3837    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3838    /// assert_eq!(duplicates, [21, 30, 13]);
3839    /// ```
3840    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3841    #[inline]
3842    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3843    where
3844        F: FnMut(&mut T) -> K,
3845        K: PartialEq,
3846    {
3847        self.partition_dedup_by(|a, b| key(a) == key(b))
3848    }
3849
3850    /// Rotates the slice in-place such that the first `mid` elements of the
3851    /// slice move to the end while the last `self.len() - mid` elements move to
3852    /// the front.
3853    ///
3854    /// After calling `rotate_left`, the element previously at index `mid` will
3855    /// become the first element in the slice.
3856    ///
3857    /// # Panics
3858    ///
3859    /// This function will panic if `mid` is greater than the length of the
3860    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3861    /// rotation.
3862    ///
3863    /// # Complexity
3864    ///
3865    /// Takes linear (in `self.len()`) time.
3866    ///
3867    /// # Examples
3868    ///
3869    /// ```
3870    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3871    /// a.rotate_left(2);
3872    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3873    /// ```
3874    ///
3875    /// Rotating a subslice:
3876    ///
3877    /// ```
3878    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3879    /// a[1..5].rotate_left(1);
3880    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3881    /// ```
3882    #[stable(feature = "slice_rotate", since = "1.26.0")]
3883    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3884    pub const fn rotate_left(&mut self, mid: usize) {
3885        assert!(mid <= self.len());
3886        let k = self.len() - mid;
3887        let p = self.as_mut_ptr();
3888
3889        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3890        // valid for reading and writing, as required by `ptr_rotate`.
3891        unsafe {
3892            rotate::ptr_rotate(mid, p.add(mid), k);
3893        }
3894    }
3895
3896    /// Rotates the slice in-place such that the first `self.len() - k`
3897    /// elements of the slice move to the end while the last `k` elements move
3898    /// to the front.
3899    ///
3900    /// After calling `rotate_right`, the element previously at index
3901    /// `self.len() - k` will become the first element in the slice.
3902    ///
3903    /// # Panics
3904    ///
3905    /// This function will panic if `k` is greater than the length of the
3906    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3907    /// rotation.
3908    ///
3909    /// # Complexity
3910    ///
3911    /// Takes linear (in `self.len()`) time.
3912    ///
3913    /// # Examples
3914    ///
3915    /// ```
3916    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3917    /// a.rotate_right(2);
3918    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3919    /// ```
3920    ///
3921    /// Rotating a subslice:
3922    ///
3923    /// ```
3924    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3925    /// a[1..5].rotate_right(1);
3926    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3927    /// ```
3928    #[stable(feature = "slice_rotate", since = "1.26.0")]
3929    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3930    pub const fn rotate_right(&mut self, k: usize) {
3931        assert!(k <= self.len());
3932        let mid = self.len() - k;
3933        let p = self.as_mut_ptr();
3934
3935        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3936        // valid for reading and writing, as required by `ptr_rotate`.
3937        unsafe {
3938            rotate::ptr_rotate(mid, p.add(mid), k);
3939        }
3940    }
3941
3942    /// Fills `self` with elements by cloning `value`.
3943    ///
3944    /// # Examples
3945    ///
3946    /// ```
3947    /// let mut buf = vec![0; 10];
3948    /// buf.fill(1);
3949    /// assert_eq!(buf, vec![1; 10]);
3950    /// ```
3951    #[doc(alias = "memset")]
3952    #[stable(feature = "slice_fill", since = "1.50.0")]
3953    pub fn fill(&mut self, value: T)
3954    where
3955        T: Clone,
3956    {
3957        specialize::SpecFill::spec_fill(self, value);
3958    }
3959
3960    /// Fills `self` with elements returned by calling a closure repeatedly.
3961    ///
3962    /// This method uses a closure to create new values. If you'd rather
3963    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3964    /// trait to generate values, you can pass [`Default::default`] as the
3965    /// argument.
3966    ///
3967    /// [`fill`]: slice::fill
3968    ///
3969    /// # Examples
3970    ///
3971    /// ```
3972    /// let mut buf = vec![1; 10];
3973    /// buf.fill_with(Default::default);
3974    /// assert_eq!(buf, vec![0; 10]);
3975    /// ```
3976    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3977    pub fn fill_with<F>(&mut self, mut f: F)
3978    where
3979        F: FnMut() -> T,
3980    {
3981        for el in self {
3982            *el = f();
3983        }
3984    }
3985
3986    /// Copies the elements from `src` into `self`.
3987    ///
3988    /// The length of `src` must be the same as `self`.
3989    ///
3990    /// # Panics
3991    ///
3992    /// This function will panic if the two slices have different lengths.
3993    ///
3994    /// # Examples
3995    ///
3996    /// Cloning two elements from a slice into another:
3997    ///
3998    /// ```
3999    /// let src = [1, 2, 3, 4];
4000    /// let mut dst = [0, 0];
4001    ///
4002    /// // Because the slices have to be the same length,
4003    /// // we slice the source slice from four elements
4004    /// // to two. It will panic if we don't do this.
4005    /// dst.clone_from_slice(&src[2..]);
4006    ///
4007    /// assert_eq!(src, [1, 2, 3, 4]);
4008    /// assert_eq!(dst, [3, 4]);
4009    /// ```
4010    ///
4011    /// Rust enforces that there can only be one mutable reference with no
4012    /// immutable references to a particular piece of data in a particular
4013    /// scope. Because of this, attempting to use `clone_from_slice` on a
4014    /// single slice will result in a compile failure:
4015    ///
4016    /// ```compile_fail
4017    /// let mut slice = [1, 2, 3, 4, 5];
4018    ///
4019    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
4020    /// ```
4021    ///
4022    /// To work around this, we can use [`split_at_mut`] to create two distinct
4023    /// sub-slices from a slice:
4024    ///
4025    /// ```
4026    /// let mut slice = [1, 2, 3, 4, 5];
4027    ///
4028    /// {
4029    ///     let (left, right) = slice.split_at_mut(2);
4030    ///     left.clone_from_slice(&right[1..]);
4031    /// }
4032    ///
4033    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
4034    /// ```
4035    ///
4036    /// [`copy_from_slice`]: slice::copy_from_slice
4037    /// [`split_at_mut`]: slice::split_at_mut
4038    #[stable(feature = "clone_from_slice", since = "1.7.0")]
4039    #[track_caller]
4040    #[rustc_const_unstable(feature = "const_clone", issue = "142757")]
4041    pub const fn clone_from_slice(&mut self, src: &[T])
4042    where
4043        T: [const] Clone + [const] Destruct,
4044    {
4045        self.spec_clone_from(src);
4046    }
4047
4048    /// Copies all elements from `src` into `self`, using a memcpy.
4049    ///
4050    /// The length of `src` must be the same as `self`.
4051    ///
4052    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
4053    ///
4054    /// # Panics
4055    ///
4056    /// This function will panic if the two slices have different lengths.
4057    ///
4058    /// # Examples
4059    ///
4060    /// Copying two elements from a slice into another:
4061    ///
4062    /// ```
4063    /// let src = [1, 2, 3, 4];
4064    /// let mut dst = [0, 0];
4065    ///
4066    /// // Because the slices have to be the same length,
4067    /// // we slice the source slice from four elements
4068    /// // to two. It will panic if we don't do this.
4069    /// dst.copy_from_slice(&src[2..]);
4070    ///
4071    /// assert_eq!(src, [1, 2, 3, 4]);
4072    /// assert_eq!(dst, [3, 4]);
4073    /// ```
4074    ///
4075    /// Rust enforces that there can only be one mutable reference with no
4076    /// immutable references to a particular piece of data in a particular
4077    /// scope. Because of this, attempting to use `copy_from_slice` on a
4078    /// single slice will result in a compile failure:
4079    ///
4080    /// ```compile_fail
4081    /// let mut slice = [1, 2, 3, 4, 5];
4082    ///
4083    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
4084    /// ```
4085    ///
4086    /// To work around this, we can use [`split_at_mut`] to create two distinct
4087    /// sub-slices from a slice:
4088    ///
4089    /// ```
4090    /// let mut slice = [1, 2, 3, 4, 5];
4091    ///
4092    /// {
4093    ///     let (left, right) = slice.split_at_mut(2);
4094    ///     left.copy_from_slice(&right[1..]);
4095    /// }
4096    ///
4097    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
4098    /// ```
4099    ///
4100    /// [`clone_from_slice`]: slice::clone_from_slice
4101    /// [`split_at_mut`]: slice::split_at_mut
4102    #[doc(alias = "memcpy")]
4103    #[inline]
4104    #[stable(feature = "copy_from_slice", since = "1.9.0")]
4105    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
4106    #[track_caller]
4107    pub const fn copy_from_slice(&mut self, src: &[T])
4108    where
4109        T: Copy,
4110    {
4111        // SAFETY: `T` implements `Copy`.
4112        unsafe { copy_from_slice_impl(self, src) }
4113    }
4114
4115    /// Copies elements from one part of the slice to another part of itself,
4116    /// using a memmove.
4117    ///
4118    /// `src` is the range within `self` to copy from. `dest` is the starting
4119    /// index of the range within `self` to copy to, which will have the same
4120    /// length as `src`. The two ranges may overlap. The ends of the two ranges
4121    /// must be less than or equal to `self.len()`.
4122    ///
4123    /// # Panics
4124    ///
4125    /// This function will panic if either range exceeds the end of the slice,
4126    /// or if the end of `src` is before the start.
4127    ///
4128    /// # Examples
4129    ///
4130    /// Copying four bytes within a slice:
4131    ///
4132    /// ```
4133    /// let mut bytes = *b"Hello, World!";
4134    ///
4135    /// bytes.copy_within(1..5, 8);
4136    ///
4137    /// assert_eq!(&bytes, b"Hello, Wello!");
4138    /// ```
4139    #[stable(feature = "copy_within", since = "1.37.0")]
4140    #[track_caller]
4141    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
4142    where
4143        T: Copy,
4144    {
4145        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
4146        let count = src_end - src_start;
4147        assert!(dest <= self.len() - count, "dest is out of bounds");
4148        // SAFETY: the conditions for `ptr::copy` have all been checked above,
4149        // as have those for `ptr::add`.
4150        unsafe {
4151            // Derive both `src_ptr` and `dest_ptr` from the same loan
4152            let ptr = self.as_mut_ptr();
4153            let src_ptr = ptr.add(src_start);
4154            let dest_ptr = ptr.add(dest);
4155            ptr::copy(src_ptr, dest_ptr, count);
4156        }
4157    }
4158
4159    /// Swaps all elements in `self` with those in `other`.
4160    ///
4161    /// The length of `other` must be the same as `self`.
4162    ///
4163    /// # Panics
4164    ///
4165    /// This function will panic if the two slices have different lengths.
4166    ///
4167    /// # Example
4168    ///
4169    /// Swapping two elements across slices:
4170    ///
4171    /// ```
4172    /// let mut slice1 = [0, 0];
4173    /// let mut slice2 = [1, 2, 3, 4];
4174    ///
4175    /// slice1.swap_with_slice(&mut slice2[2..]);
4176    ///
4177    /// assert_eq!(slice1, [3, 4]);
4178    /// assert_eq!(slice2, [1, 2, 0, 0]);
4179    /// ```
4180    ///
4181    /// Rust enforces that there can only be one mutable reference to a
4182    /// particular piece of data in a particular scope. Because of this,
4183    /// attempting to use `swap_with_slice` on a single slice will result in
4184    /// a compile failure:
4185    ///
4186    /// ```compile_fail
4187    /// let mut slice = [1, 2, 3, 4, 5];
4188    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
4189    /// ```
4190    ///
4191    /// To work around this, we can use [`split_at_mut`] to create two distinct
4192    /// mutable sub-slices from a slice:
4193    ///
4194    /// ```
4195    /// let mut slice = [1, 2, 3, 4, 5];
4196    ///
4197    /// {
4198    ///     let (left, right) = slice.split_at_mut(2);
4199    ///     left.swap_with_slice(&mut right[1..]);
4200    /// }
4201    ///
4202    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
4203    /// ```
4204    ///
4205    /// [`split_at_mut`]: slice::split_at_mut
4206    #[stable(feature = "swap_with_slice", since = "1.27.0")]
4207    #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
4208    #[track_caller]
4209    pub const fn swap_with_slice(&mut self, other: &mut [T]) {
4210        assert!(self.len() == other.len(), "destination and source slices have different lengths");
4211        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
4212        // checked to have the same length. The slices cannot overlap because
4213        // mutable references are exclusive.
4214        unsafe {
4215            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
4216        }
4217    }
4218
4219    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4220    fn align_to_offsets<U>(&self) -> (usize, usize) {
4221        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4222        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4223        //
4224        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4225        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4226        // place of every 3 Ts in the `rest` slice. A bit more complicated.
4227        //
4228        // Formula to calculate this is:
4229        //
4230        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4231        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4232        //
4233        // Expanded and simplified:
4234        //
4235        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4236        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4237        //
4238        // Luckily since all this is constant-evaluated... performance here matters not!
4239        const fn gcd(a: usize, b: usize) -> usize {
4240            if b == 0 { a } else { gcd(b, a % b) }
4241        }
4242
4243        // Explicitly wrap the function call in a const block so it gets
4244        // constant-evaluated even in debug mode.
4245        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4246        let ts: usize = size_of::<U>() / gcd;
4247        let us: usize = size_of::<T>() / gcd;
4248
4249        // Armed with this knowledge, we can find how many `U`s we can fit!
4250        let us_len = self.len() / ts * us;
4251        // And how many `T`s will be in the trailing slice!
4252        let ts_len = self.len() % ts;
4253        (us_len, ts_len)
4254    }
4255
4256    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4257    /// maintained.
4258    ///
4259    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4260    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4261    /// the given alignment constraint and element size.
4262    ///
4263    /// This method has no purpose when either input element `T` or output element `U` are
4264    /// zero-sized and will return the original slice without splitting anything.
4265    ///
4266    /// # Safety
4267    ///
4268    /// This method is essentially a `transmute` with respect to the elements in the returned
4269    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4270    ///
4271    /// # Examples
4272    ///
4273    /// Basic usage:
4274    ///
4275    /// ```
4276    /// unsafe {
4277    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4278    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4279    ///     // less_efficient_algorithm_for_bytes(prefix);
4280    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4281    ///     // less_efficient_algorithm_for_bytes(suffix);
4282    /// }
4283    /// ```
4284    #[stable(feature = "slice_align_to", since = "1.30.0")]
4285    #[must_use]
4286    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4287        // Note that most of this function will be constant-evaluated,
4288        if U::IS_ZST || T::IS_ZST {
4289            // handle ZSTs specially, which is – don't handle them at all.
4290            return (self, &[], &[]);
4291        }
4292
4293        // First, find at what point do we split between the first and 2nd slice. Easy with
4294        // ptr.align_offset.
4295        let ptr = self.as_ptr();
4296        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4297        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4298        if offset > self.len() {
4299            (self, &[], &[])
4300        } else {
4301            let (left, rest) = self.split_at(offset);
4302            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4303            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4304            #[cfg(miri)]
4305            crate::intrinsics::miri_promise_symbolic_alignment(
4306                rest.as_ptr().cast(),
4307                align_of::<U>(),
4308            );
4309            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4310            // since the caller guarantees that we can transmute `T` to `U` safely.
4311            unsafe {
4312                (
4313                    left,
4314                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4315                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4316                )
4317            }
4318        }
4319    }
4320
4321    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4322    /// types is maintained.
4323    ///
4324    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4325    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4326    /// the given alignment constraint and element size.
4327    ///
4328    /// This method has no purpose when either input element `T` or output element `U` are
4329    /// zero-sized and will return the original slice without splitting anything.
4330    ///
4331    /// # Safety
4332    ///
4333    /// This method is essentially a `transmute` with respect to the elements in the returned
4334    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4335    ///
4336    /// # Examples
4337    ///
4338    /// Basic usage:
4339    ///
4340    /// ```
4341    /// unsafe {
4342    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4343    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4344    ///     // less_efficient_algorithm_for_bytes(prefix);
4345    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4346    ///     // less_efficient_algorithm_for_bytes(suffix);
4347    /// }
4348    /// ```
4349    #[stable(feature = "slice_align_to", since = "1.30.0")]
4350    #[must_use]
4351    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4352        // Note that most of this function will be constant-evaluated,
4353        if U::IS_ZST || T::IS_ZST {
4354            // handle ZSTs specially, which is – don't handle them at all.
4355            return (self, &mut [], &mut []);
4356        }
4357
4358        // First, find at what point do we split between the first and 2nd slice. Easy with
4359        // ptr.align_offset.
4360        let ptr = self.as_ptr();
4361        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4362        // rest of the method. This is done by passing a pointer to &[T] with an
4363        // alignment targeted for U.
4364        // `crate::ptr::align_offset` is called with a correctly aligned and
4365        // valid pointer `ptr` (it comes from a reference to `self`) and with
4366        // a size that is a power of two (since it comes from the alignment for U),
4367        // satisfying its safety constraints.
4368        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4369        if offset > self.len() {
4370            (self, &mut [], &mut [])
4371        } else {
4372            let (left, rest) = self.split_at_mut(offset);
4373            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4374            let rest_len = rest.len();
4375            let mut_ptr = rest.as_mut_ptr();
4376            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4377            #[cfg(miri)]
4378            crate::intrinsics::miri_promise_symbolic_alignment(
4379                mut_ptr.cast() as *const (),
4380                align_of::<U>(),
4381            );
4382            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4383            // SAFETY: see comments for `align_to`.
4384            unsafe {
4385                (
4386                    left,
4387                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4388                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4389                )
4390            }
4391        }
4392    }
4393
4394    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4395    ///
4396    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4397    /// guarantees as that method.
4398    ///
4399    /// # Panics
4400    ///
4401    /// This will panic if the size of the SIMD type is different from
4402    /// `LANES` times that of the scalar.
4403    ///
4404    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4405    /// that from ever happening, as only power-of-two numbers of lanes are
4406    /// supported.  It's possible that, in the future, those restrictions might
4407    /// be lifted in a way that would make it possible to see panics from this
4408    /// method for something like `LANES == 3`.
4409    ///
4410    /// # Examples
4411    ///
4412    /// ```
4413    /// #![feature(portable_simd)]
4414    /// use core::simd::prelude::*;
4415    ///
4416    /// let short = &[1, 2, 3];
4417    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4418    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4419    ///
4420    /// // They might be split in any possible way between prefix and suffix
4421    /// let it = prefix.iter().chain(suffix).copied();
4422    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4423    ///
4424    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4425    ///     use std::ops::Add;
4426    ///     let (prefix, middle, suffix) = x.as_simd();
4427    ///     let sums = f32x4::from_array([
4428    ///         prefix.iter().copied().sum(),
4429    ///         0.0,
4430    ///         0.0,
4431    ///         suffix.iter().copied().sum(),
4432    ///     ]);
4433    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4434    ///     sums.reduce_sum()
4435    /// }
4436    ///
4437    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4438    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4439    /// ```
4440    #[unstable(feature = "portable_simd", issue = "86656")]
4441    #[must_use]
4442    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4443    where
4444        Simd<T, LANES>: AsRef<[T; LANES]>,
4445        T: simd::SimdElement,
4446        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4447    {
4448        // These are expected to always match, as vector types are laid out like
4449        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4450        // might as well double-check since it'll optimize away anyhow.
4451        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4452
4453        // SAFETY: The simd types have the same layout as arrays, just with
4454        // potentially-higher alignment, so the de-facto transmutes are sound.
4455        unsafe { self.align_to() }
4456    }
4457
4458    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4459    /// and a mutable suffix.
4460    ///
4461    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4462    /// guarantees as that method.
4463    ///
4464    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4465    ///
4466    /// # Panics
4467    ///
4468    /// This will panic if the size of the SIMD type is different from
4469    /// `LANES` times that of the scalar.
4470    ///
4471    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4472    /// that from ever happening, as only power-of-two numbers of lanes are
4473    /// supported.  It's possible that, in the future, those restrictions might
4474    /// be lifted in a way that would make it possible to see panics from this
4475    /// method for something like `LANES == 3`.
4476    #[unstable(feature = "portable_simd", issue = "86656")]
4477    #[must_use]
4478    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4479    where
4480        Simd<T, LANES>: AsMut<[T; LANES]>,
4481        T: simd::SimdElement,
4482        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4483    {
4484        // These are expected to always match, as vector types are laid out like
4485        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4486        // might as well double-check since it'll optimize away anyhow.
4487        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4488
4489        // SAFETY: The simd types have the same layout as arrays, just with
4490        // potentially-higher alignment, so the de-facto transmutes are sound.
4491        unsafe { self.align_to_mut() }
4492    }
4493
4494    /// Checks if the elements of this slice are sorted.
4495    ///
4496    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4497    /// slice yields exactly zero or one element, `true` is returned.
4498    ///
4499    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4500    /// implies that this function returns `false` if any two consecutive items are not
4501    /// comparable.
4502    ///
4503    /// # Examples
4504    ///
4505    /// ```
4506    /// let empty: [i32; 0] = [];
4507    ///
4508    /// assert!([1, 2, 2, 9].is_sorted());
4509    /// assert!(![1, 3, 2, 4].is_sorted());
4510    /// assert!([0].is_sorted());
4511    /// assert!(empty.is_sorted());
4512    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4513    /// ```
4514    #[inline]
4515    #[stable(feature = "is_sorted", since = "1.82.0")]
4516    #[must_use]
4517    pub fn is_sorted(&self) -> bool
4518    where
4519        T: PartialOrd,
4520    {
4521        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4522        const CHUNK_SIZE: usize = 33;
4523        if self.len() < CHUNK_SIZE {
4524            return self.windows(2).all(|w| w[0] <= w[1]);
4525        }
4526        let mut i = 0;
4527        // Check in chunks for autovectorization.
4528        while i < self.len() - CHUNK_SIZE {
4529            let chunk = &self[i..i + CHUNK_SIZE];
4530            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4531                return false;
4532            }
4533            // We need to ensure that chunk boundaries are also sorted.
4534            // Overlap the next chunk with the last element of our last chunk.
4535            i += CHUNK_SIZE - 1;
4536        }
4537        self[i..].windows(2).all(|w| w[0] <= w[1])
4538    }
4539
4540    /// Checks if the elements of this slice are sorted using the given comparator function.
4541    ///
4542    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4543    /// function to determine whether two elements are to be considered in sorted order.
4544    ///
4545    /// # Examples
4546    ///
4547    /// ```
4548    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4549    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4550    ///
4551    /// assert!([0].is_sorted_by(|a, b| true));
4552    /// assert!([0].is_sorted_by(|a, b| false));
4553    ///
4554    /// let empty: [i32; 0] = [];
4555    /// assert!(empty.is_sorted_by(|a, b| false));
4556    /// assert!(empty.is_sorted_by(|a, b| true));
4557    /// ```
4558    #[stable(feature = "is_sorted", since = "1.82.0")]
4559    #[must_use]
4560    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4561    where
4562        F: FnMut(&'a T, &'a T) -> bool,
4563    {
4564        self.array_windows().all(|[a, b]| compare(a, b))
4565    }
4566
4567    /// Checks if the elements of this slice are sorted using the given key extraction function.
4568    ///
4569    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4570    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4571    /// documentation for more information.
4572    ///
4573    /// [`is_sorted`]: slice::is_sorted
4574    ///
4575    /// # Examples
4576    ///
4577    /// ```
4578    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4579    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4580    /// ```
4581    #[inline]
4582    #[stable(feature = "is_sorted", since = "1.82.0")]
4583    #[must_use]
4584    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4585    where
4586        F: FnMut(&'a T) -> K,
4587        K: PartialOrd,
4588    {
4589        self.iter().is_sorted_by_key(f)
4590    }
4591
4592    /// Returns the index of the partition point according to the given predicate
4593    /// (the index of the first element of the second partition).
4594    ///
4595    /// The slice is assumed to be partitioned according to the given predicate.
4596    /// This means that all elements for which the predicate returns true are at the start of the slice
4597    /// and all elements for which the predicate returns false are at the end.
4598    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4599    /// (all odd numbers are at the start, all even at the end).
4600    ///
4601    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4602    /// as this method performs a kind of binary search.
4603    ///
4604    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4605    ///
4606    /// [`binary_search`]: slice::binary_search
4607    /// [`binary_search_by`]: slice::binary_search_by
4608    /// [`binary_search_by_key`]: slice::binary_search_by_key
4609    ///
4610    /// # Examples
4611    ///
4612    /// ```
4613    /// let v = [1, 2, 3, 3, 5, 6, 7];
4614    /// let i = v.partition_point(|&x| x < 5);
4615    ///
4616    /// assert_eq!(i, 4);
4617    /// assert!(v[..i].iter().all(|&x| x < 5));
4618    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4619    /// ```
4620    ///
4621    /// If all elements of the slice match the predicate, including if the slice
4622    /// is empty, then the length of the slice will be returned:
4623    ///
4624    /// ```
4625    /// let a = [2, 4, 8];
4626    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4627    /// let a: [i32; 0] = [];
4628    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4629    /// ```
4630    ///
4631    /// If you want to insert an item to a sorted vector, while maintaining
4632    /// sort order:
4633    ///
4634    /// ```
4635    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4636    /// let num = 42;
4637    /// let idx = s.partition_point(|&x| x <= num);
4638    /// s.insert(idx, num);
4639    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4640    /// ```
4641    #[stable(feature = "partition_point", since = "1.52.0")]
4642    #[must_use]
4643    pub fn partition_point<P>(&self, mut pred: P) -> usize
4644    where
4645        P: FnMut(&T) -> bool,
4646    {
4647        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4648    }
4649
4650    /// Removes the subslice corresponding to the given range
4651    /// and returns a reference to it.
4652    ///
4653    /// Returns `None` and does not modify the slice if the given
4654    /// range is out of bounds.
4655    ///
4656    /// Note that this method only accepts one-sided ranges such as
4657    /// `2..` or `..6`, but not `2..6`.
4658    ///
4659    /// # Examples
4660    ///
4661    /// Splitting off the first three elements of a slice:
4662    ///
4663    /// ```
4664    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4665    /// let mut first_three = slice.split_off(..3).unwrap();
4666    ///
4667    /// assert_eq!(slice, &['d']);
4668    /// assert_eq!(first_three, &['a', 'b', 'c']);
4669    /// ```
4670    ///
4671    /// Splitting off a slice starting with the third element:
4672    ///
4673    /// ```
4674    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4675    /// let mut tail = slice.split_off(2..).unwrap();
4676    ///
4677    /// assert_eq!(slice, &['a', 'b']);
4678    /// assert_eq!(tail, &['c', 'd']);
4679    /// ```
4680    ///
4681    /// Getting `None` when `range` is out of bounds:
4682    ///
4683    /// ```
4684    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4685    ///
4686    /// assert_eq!(None, slice.split_off(5..));
4687    /// assert_eq!(None, slice.split_off(..5));
4688    /// assert_eq!(None, slice.split_off(..=4));
4689    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4690    /// assert_eq!(Some(expected), slice.split_off(..4));
4691    /// ```
4692    #[inline]
4693    #[must_use = "method does not modify the slice if the range is out of bounds"]
4694    #[stable(feature = "slice_take", since = "1.87.0")]
4695    pub fn split_off<'a, R: OneSidedRange<usize>>(
4696        self: &mut &'a Self,
4697        range: R,
4698    ) -> Option<&'a Self> {
4699        let (direction, split_index) = split_point_of(range)?;
4700        if split_index > self.len() {
4701            return None;
4702        }
4703        let (front, back) = self.split_at(split_index);
4704        match direction {
4705            Direction::Front => {
4706                *self = back;
4707                Some(front)
4708            }
4709            Direction::Back => {
4710                *self = front;
4711                Some(back)
4712            }
4713        }
4714    }
4715
4716    /// Removes the subslice corresponding to the given range
4717    /// and returns a mutable reference to it.
4718    ///
4719    /// Returns `None` and does not modify the slice if the given
4720    /// range is out of bounds.
4721    ///
4722    /// Note that this method only accepts one-sided ranges such as
4723    /// `2..` or `..6`, but not `2..6`.
4724    ///
4725    /// # Examples
4726    ///
4727    /// Splitting off the first three elements of a slice:
4728    ///
4729    /// ```
4730    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4731    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4732    ///
4733    /// assert_eq!(slice, &mut ['d']);
4734    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4735    /// ```
4736    ///
4737    /// Splitting off a slice starting with the third element:
4738    ///
4739    /// ```
4740    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4741    /// let mut tail = slice.split_off_mut(2..).unwrap();
4742    ///
4743    /// assert_eq!(slice, &mut ['a', 'b']);
4744    /// assert_eq!(tail, &mut ['c', 'd']);
4745    /// ```
4746    ///
4747    /// Getting `None` when `range` is out of bounds:
4748    ///
4749    /// ```
4750    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4751    ///
4752    /// assert_eq!(None, slice.split_off_mut(5..));
4753    /// assert_eq!(None, slice.split_off_mut(..5));
4754    /// assert_eq!(None, slice.split_off_mut(..=4));
4755    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4756    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4757    /// ```
4758    #[inline]
4759    #[must_use = "method does not modify the slice if the range is out of bounds"]
4760    #[stable(feature = "slice_take", since = "1.87.0")]
4761    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4762        self: &mut &'a mut Self,
4763        range: R,
4764    ) -> Option<&'a mut Self> {
4765        let (direction, split_index) = split_point_of(range)?;
4766        if split_index > self.len() {
4767            return None;
4768        }
4769        let (front, back) = mem::take(self).split_at_mut(split_index);
4770        match direction {
4771            Direction::Front => {
4772                *self = back;
4773                Some(front)
4774            }
4775            Direction::Back => {
4776                *self = front;
4777                Some(back)
4778            }
4779        }
4780    }
4781
4782    /// Removes the first element of the slice and returns a reference
4783    /// to it.
4784    ///
4785    /// Returns `None` if the slice is empty.
4786    ///
4787    /// # Examples
4788    ///
4789    /// ```
4790    /// let mut slice: &[_] = &['a', 'b', 'c'];
4791    /// let first = slice.split_off_first().unwrap();
4792    ///
4793    /// assert_eq!(slice, &['b', 'c']);
4794    /// assert_eq!(first, &'a');
4795    /// ```
4796    #[inline]
4797    #[stable(feature = "slice_take", since = "1.87.0")]
4798    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4799    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4800        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4801        let Some((first, rem)) = self.split_first() else { return None };
4802        *self = rem;
4803        Some(first)
4804    }
4805
4806    /// Removes the first element of the slice and returns a mutable
4807    /// reference to it.
4808    ///
4809    /// Returns `None` if the slice is empty.
4810    ///
4811    /// # Examples
4812    ///
4813    /// ```
4814    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4815    /// let first = slice.split_off_first_mut().unwrap();
4816    /// *first = 'd';
4817    ///
4818    /// assert_eq!(slice, &['b', 'c']);
4819    /// assert_eq!(first, &'d');
4820    /// ```
4821    #[inline]
4822    #[stable(feature = "slice_take", since = "1.87.0")]
4823    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4824    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4825        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4826        // Original: `mem::take(self).split_first_mut()?`
4827        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4828        *self = rem;
4829        Some(first)
4830    }
4831
4832    /// Removes the last element of the slice and returns a reference
4833    /// to it.
4834    ///
4835    /// Returns `None` if the slice is empty.
4836    ///
4837    /// # Examples
4838    ///
4839    /// ```
4840    /// let mut slice: &[_] = &['a', 'b', 'c'];
4841    /// let last = slice.split_off_last().unwrap();
4842    ///
4843    /// assert_eq!(slice, &['a', 'b']);
4844    /// assert_eq!(last, &'c');
4845    /// ```
4846    #[inline]
4847    #[stable(feature = "slice_take", since = "1.87.0")]
4848    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4849    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4850        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4851        let Some((last, rem)) = self.split_last() else { return None };
4852        *self = rem;
4853        Some(last)
4854    }
4855
4856    /// Removes the last element of the slice and returns a mutable
4857    /// reference to it.
4858    ///
4859    /// Returns `None` if the slice is empty.
4860    ///
4861    /// # Examples
4862    ///
4863    /// ```
4864    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4865    /// let last = slice.split_off_last_mut().unwrap();
4866    /// *last = 'd';
4867    ///
4868    /// assert_eq!(slice, &['a', 'b']);
4869    /// assert_eq!(last, &'d');
4870    /// ```
4871    #[inline]
4872    #[stable(feature = "slice_take", since = "1.87.0")]
4873    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4874    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4875        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4876        // Original: `mem::take(self).split_last_mut()?`
4877        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4878        *self = rem;
4879        Some(last)
4880    }
4881
4882    /// Returns mutable references to many indices at once, without doing any checks.
4883    ///
4884    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4885    /// that this method takes an array, so all indices must be of the same type.
4886    /// If passed an array of `usize`s this method gives back an array of mutable references
4887    /// to single elements, while if passed an array of ranges it gives back an array of
4888    /// mutable references to slices.
4889    ///
4890    /// For a safe alternative see [`get_disjoint_mut`].
4891    ///
4892    /// # Safety
4893    ///
4894    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4895    /// even if the resulting references are not used.
4896    ///
4897    /// # Examples
4898    ///
4899    /// ```
4900    /// let x = &mut [1, 2, 4];
4901    ///
4902    /// unsafe {
4903    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4904    ///     *a *= 10;
4905    ///     *b *= 100;
4906    /// }
4907    /// assert_eq!(x, &[10, 2, 400]);
4908    ///
4909    /// unsafe {
4910    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4911    ///     a[0] = 8;
4912    ///     b[0] = 88;
4913    ///     b[1] = 888;
4914    /// }
4915    /// assert_eq!(x, &[8, 88, 888]);
4916    ///
4917    /// unsafe {
4918    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4919    ///     a[0] = 11;
4920    ///     a[1] = 111;
4921    ///     b[0] = 1;
4922    /// }
4923    /// assert_eq!(x, &[1, 11, 111]);
4924    /// ```
4925    ///
4926    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4927    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4928    #[stable(feature = "get_many_mut", since = "1.86.0")]
4929    #[inline]
4930    #[track_caller]
4931    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4932        &mut self,
4933        indices: [I; N],
4934    ) -> [&mut I::Output; N]
4935    where
4936        I: GetDisjointMutIndex + SliceIndex<Self>,
4937    {
4938        // NB: This implementation is written as it is because any variation of
4939        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4940        // or generate worse code otherwise. This is also why we need to go
4941        // through a raw pointer here.
4942        let slice: *mut [T] = self;
4943        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4944        let arr_ptr = arr.as_mut_ptr();
4945
4946        // SAFETY: We expect `indices` to contain disjunct values that are
4947        // in bounds of `self`.
4948        unsafe {
4949            for i in 0..N {
4950                let idx = indices.get_unchecked(i).clone();
4951                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4952            }
4953            arr.assume_init()
4954        }
4955    }
4956
4957    /// Returns mutable references to many indices at once.
4958    ///
4959    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4960    /// that this method takes an array, so all indices must be of the same type.
4961    /// If passed an array of `usize`s this method gives back an array of mutable references
4962    /// to single elements, while if passed an array of ranges it gives back an array of
4963    /// mutable references to slices.
4964    ///
4965    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4966    /// An empty range is not considered to overlap if it is located at the beginning or at
4967    /// the end of another range, but is considered to overlap if it is located in the middle.
4968    ///
4969    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4970    /// when passing many indices.
4971    ///
4972    /// # Examples
4973    ///
4974    /// ```
4975    /// let v = &mut [1, 2, 3];
4976    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4977    ///     *a = 413;
4978    ///     *b = 612;
4979    /// }
4980    /// assert_eq!(v, &[413, 2, 612]);
4981    ///
4982    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4983    ///     a[0] = 8;
4984    ///     b[0] = 88;
4985    ///     b[1] = 888;
4986    /// }
4987    /// assert_eq!(v, &[8, 88, 888]);
4988    ///
4989    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4990    ///     a[0] = 11;
4991    ///     a[1] = 111;
4992    ///     b[0] = 1;
4993    /// }
4994    /// assert_eq!(v, &[1, 11, 111]);
4995    /// ```
4996    #[stable(feature = "get_many_mut", since = "1.86.0")]
4997    #[inline]
4998    pub fn get_disjoint_mut<I, const N: usize>(
4999        &mut self,
5000        indices: [I; N],
5001    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
5002    where
5003        I: GetDisjointMutIndex + SliceIndex<Self>,
5004    {
5005        get_disjoint_check_valid(&indices, self.len())?;
5006        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
5007        // are disjunct and in bounds.
5008        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
5009    }
5010
5011    /// Returns the index that an element reference points to.
5012    ///
5013    /// Returns `None` if `element` does not point to the start of an element within the slice.
5014    ///
5015    /// This method is useful for extending slice iterators like [`slice::split`].
5016    ///
5017    /// Note that this uses pointer arithmetic and **does not compare elements**.
5018    /// To find the index of an element via comparison, use
5019    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
5020    ///
5021    /// # Panics
5022    /// Panics if `T` is zero-sized.
5023    ///
5024    /// # Examples
5025    /// Basic usage:
5026    /// ```
5027    /// let nums: &[u32] = &[1, 7, 1, 1];
5028    /// let num = &nums[2];
5029    ///
5030    /// assert_eq!(num, &1);
5031    /// assert_eq!(nums.element_offset(num), Some(2));
5032    /// ```
5033    /// Returning `None` with an unaligned element:
5034    /// ```
5035    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
5036    /// let flat_arr: &[u32] = arr.as_flattened();
5037    ///
5038    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
5039    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
5040    ///
5041    /// assert_eq!(ok_elm, &[0, 1]);
5042    /// assert_eq!(weird_elm, &[1, 2]);
5043    ///
5044    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
5045    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
5046    /// ```
5047    #[must_use]
5048    #[stable(feature = "element_offset", since = "CURRENT_RUSTC_VERSION")]
5049    pub fn element_offset(&self, element: &T) -> Option<usize> {
5050        if T::IS_ZST {
5051            panic!("elements are zero-sized");
5052        }
5053
5054        let self_start = self.as_ptr().addr();
5055        let elem_start = ptr::from_ref(element).addr();
5056
5057        let byte_offset = elem_start.wrapping_sub(self_start);
5058
5059        if !byte_offset.is_multiple_of(size_of::<T>()) {
5060            return None;
5061        }
5062
5063        let offset = byte_offset / size_of::<T>();
5064
5065        if offset < self.len() { Some(offset) } else { None }
5066    }
5067
5068    /// Returns the range of indices that a subslice points to.
5069    ///
5070    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
5071    /// elements in the slice.
5072    ///
5073    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
5074    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
5075    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
5076    ///
5077    /// This method is useful for extending slice iterators like [`slice::split`].
5078    ///
5079    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
5080    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
5081    ///
5082    /// # Panics
5083    /// Panics if `T` is zero-sized.
5084    ///
5085    /// # Examples
5086    /// Basic usage:
5087    /// ```
5088    /// #![feature(substr_range)]
5089    ///
5090    /// let nums = &[0, 5, 10, 0, 0, 5];
5091    ///
5092    /// let mut iter = nums
5093    ///     .split(|t| *t == 0)
5094    ///     .map(|n| nums.subslice_range(n).unwrap());
5095    ///
5096    /// assert_eq!(iter.next(), Some(0..0));
5097    /// assert_eq!(iter.next(), Some(1..3));
5098    /// assert_eq!(iter.next(), Some(4..4));
5099    /// assert_eq!(iter.next(), Some(5..6));
5100    /// ```
5101    #[must_use]
5102    #[unstable(feature = "substr_range", issue = "126769")]
5103    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
5104        if T::IS_ZST {
5105            panic!("elements are zero-sized");
5106        }
5107
5108        let self_start = self.as_ptr().addr();
5109        let subslice_start = subslice.as_ptr().addr();
5110
5111        let byte_start = subslice_start.wrapping_sub(self_start);
5112
5113        if !byte_start.is_multiple_of(size_of::<T>()) {
5114            return None;
5115        }
5116
5117        let start = byte_start / size_of::<T>();
5118        let end = start.wrapping_add(subslice.len());
5119
5120        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
5121    }
5122
5123    /// Returns the same slice `&[T]`.
5124    ///
5125    /// This method is redundant when used directly on `&[T]`, but
5126    /// it helps dereferencing other "container" types to slices,
5127    /// for example `Box<[T]>` or `Arc<[T]>`.
5128    #[inline]
5129    #[unstable(feature = "str_as_str", issue = "130366")]
5130    pub const fn as_slice(&self) -> &[T] {
5131        self
5132    }
5133
5134    /// Returns the same slice `&mut [T]`.
5135    ///
5136    /// This method is redundant when used directly on `&mut [T]`, but
5137    /// it helps dereferencing other "container" types to slices,
5138    /// for example `Box<[T]>` or `MutexGuard<[T]>`.
5139    #[inline]
5140    #[unstable(feature = "str_as_str", issue = "130366")]
5141    pub const fn as_mut_slice(&mut self) -> &mut [T] {
5142        self
5143    }
5144}
5145
5146impl<T> [MaybeUninit<T>] {
5147    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
5148    /// another type, ensuring alignment of the types is maintained.
5149    ///
5150    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
5151    /// guarantees as that method.
5152    ///
5153    /// # Examples
5154    ///
5155    /// ```
5156    /// #![feature(align_to_uninit_mut)]
5157    /// use std::mem::MaybeUninit;
5158    ///
5159    /// pub struct BumpAllocator<'scope> {
5160    ///     memory: &'scope mut [MaybeUninit<u8>],
5161    /// }
5162    ///
5163    /// impl<'scope> BumpAllocator<'scope> {
5164    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
5165    ///         Self { memory }
5166    ///     }
5167    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
5168    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
5169    ///         let prefix = self.memory.split_off_mut(..first_end)?;
5170    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
5171    ///     }
5172    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
5173    ///         let uninit = self.try_alloc_uninit()?;
5174    ///         Some(uninit.write(value))
5175    ///     }
5176    /// }
5177    ///
5178    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
5179    /// let mut allocator = BumpAllocator::new(&mut memory);
5180    /// let v = allocator.try_alloc_u32(42);
5181    /// assert_eq!(v, Some(&mut 42));
5182    /// ```
5183    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
5184    #[inline]
5185    #[must_use]
5186    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
5187        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
5188        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
5189        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
5190        // any values are valid, so this operation is safe.
5191        unsafe { self.align_to_mut() }
5192    }
5193}
5194
5195impl<T, const N: usize> [[T; N]] {
5196    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
5197    ///
5198    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
5199    ///
5200    /// [`as_chunks`]: slice::as_chunks
5201    /// [`as_rchunks`]: slice::as_rchunks
5202    ///
5203    /// # Panics
5204    ///
5205    /// This panics if the length of the resulting slice would overflow a `usize`.
5206    ///
5207    /// This is only possible when flattening a slice of arrays of zero-sized
5208    /// types, and thus tends to be irrelevant in practice. If
5209    /// `size_of::<T>() > 0`, this will never panic.
5210    ///
5211    /// # Examples
5212    ///
5213    /// ```
5214    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
5215    ///
5216    /// assert_eq!(
5217    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
5218    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
5219    /// );
5220    ///
5221    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
5222    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
5223    ///
5224    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
5225    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
5226    /// ```
5227    #[stable(feature = "slice_flatten", since = "1.80.0")]
5228    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5229    pub const fn as_flattened(&self) -> &[T] {
5230        let len = if T::IS_ZST {
5231            self.len().checked_mul(N).expect("slice len overflow")
5232        } else {
5233            // SAFETY: `self.len() * N` cannot overflow because `self` is
5234            // already in the address space.
5235            unsafe { self.len().unchecked_mul(N) }
5236        };
5237        // SAFETY: `[T]` is layout-identical to `[T; N]`
5238        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5239    }
5240
5241    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5242    ///
5243    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5244    ///
5245    /// [`as_chunks_mut`]: slice::as_chunks_mut
5246    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5247    ///
5248    /// # Panics
5249    ///
5250    /// This panics if the length of the resulting slice would overflow a `usize`.
5251    ///
5252    /// This is only possible when flattening a slice of arrays of zero-sized
5253    /// types, and thus tends to be irrelevant in practice. If
5254    /// `size_of::<T>() > 0`, this will never panic.
5255    ///
5256    /// # Examples
5257    ///
5258    /// ```
5259    /// fn add_5_to_all(slice: &mut [i32]) {
5260    ///     for i in slice {
5261    ///         *i += 5;
5262    ///     }
5263    /// }
5264    ///
5265    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5266    /// add_5_to_all(array.as_flattened_mut());
5267    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5268    /// ```
5269    #[stable(feature = "slice_flatten", since = "1.80.0")]
5270    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5271    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5272        let len = if T::IS_ZST {
5273            self.len().checked_mul(N).expect("slice len overflow")
5274        } else {
5275            // SAFETY: `self.len() * N` cannot overflow because `self` is
5276            // already in the address space.
5277            unsafe { self.len().unchecked_mul(N) }
5278        };
5279        // SAFETY: `[T]` is layout-identical to `[T; N]`
5280        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5281    }
5282}
5283
5284impl [f32] {
5285    /// Sorts the slice of floats.
5286    ///
5287    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5288    /// the ordering defined by [`f32::total_cmp`].
5289    ///
5290    /// # Current implementation
5291    ///
5292    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5293    ///
5294    /// # Examples
5295    ///
5296    /// ```
5297    /// #![feature(sort_floats)]
5298    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5299    ///
5300    /// v.sort_floats();
5301    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5302    /// assert_eq!(&v[..8], &sorted[..8]);
5303    /// assert!(v[8].is_nan());
5304    /// ```
5305    #[unstable(feature = "sort_floats", issue = "93396")]
5306    #[inline]
5307    pub fn sort_floats(&mut self) {
5308        self.sort_unstable_by(f32::total_cmp);
5309    }
5310}
5311
5312impl [f64] {
5313    /// Sorts the slice of floats.
5314    ///
5315    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5316    /// the ordering defined by [`f64::total_cmp`].
5317    ///
5318    /// # Current implementation
5319    ///
5320    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5321    ///
5322    /// # Examples
5323    ///
5324    /// ```
5325    /// #![feature(sort_floats)]
5326    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5327    ///
5328    /// v.sort_floats();
5329    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5330    /// assert_eq!(&v[..8], &sorted[..8]);
5331    /// assert!(v[8].is_nan());
5332    /// ```
5333    #[unstable(feature = "sort_floats", issue = "93396")]
5334    #[inline]
5335    pub fn sort_floats(&mut self) {
5336        self.sort_unstable_by(f64::total_cmp);
5337    }
5338}
5339
5340/// Copies `src` to `dest`.
5341///
5342/// # Safety
5343/// `T` must implement one of `Copy` or `TrivialClone`.
5344#[track_caller]
5345const unsafe fn copy_from_slice_impl<T: Clone>(dest: &mut [T], src: &[T]) {
5346    // The panic code path was put into a cold function to not bloat the
5347    // call site.
5348    #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
5349    #[cfg_attr(panic = "immediate-abort", inline)]
5350    #[track_caller]
5351    const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
5352        const_panic!(
5353            "copy_from_slice: source slice length does not match destination slice length",
5354            "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
5355            src_len: usize,
5356            dst_len: usize,
5357        )
5358    }
5359
5360    if dest.len() != src.len() {
5361        len_mismatch_fail(dest.len(), src.len());
5362    }
5363
5364    // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
5365    // checked to have the same length. The slices cannot overlap because
5366    // mutable references are exclusive.
5367    unsafe {
5368        ptr::copy_nonoverlapping(src.as_ptr(), dest.as_mut_ptr(), dest.len());
5369    }
5370}
5371
5372#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
5373const trait CloneFromSpec<T> {
5374    fn spec_clone_from(&mut self, src: &[T])
5375    where
5376        T: [const] Destruct;
5377}
5378
5379#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
5380impl<T> const CloneFromSpec<T> for [T]
5381where
5382    T: [const] Clone + [const] Destruct,
5383{
5384    #[track_caller]
5385    default fn spec_clone_from(&mut self, src: &[T]) {
5386        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5387        // NOTE: We need to explicitly slice them to the same length
5388        // to make it easier for the optimizer to elide bounds checking.
5389        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5390        let len = self.len();
5391        let src = &src[..len];
5392        // FIXME(const_hack): make this a `for idx in 0..self.len()` loop.
5393        let mut idx = 0;
5394        while idx < self.len() {
5395            self[idx].clone_from(&src[idx]);
5396            idx += 1;
5397        }
5398    }
5399}
5400
5401#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
5402impl<T> const CloneFromSpec<T> for [T]
5403where
5404    T: [const] TrivialClone + [const] Destruct,
5405{
5406    #[track_caller]
5407    fn spec_clone_from(&mut self, src: &[T]) {
5408        // SAFETY: `T` implements `TrivialClone`.
5409        unsafe {
5410            copy_from_slice_impl(self, src);
5411        }
5412    }
5413}
5414
5415#[stable(feature = "rust1", since = "1.0.0")]
5416#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5417impl<T> const Default for &[T] {
5418    /// Creates an empty slice.
5419    fn default() -> Self {
5420        &[]
5421    }
5422}
5423
5424#[stable(feature = "mut_slice_default", since = "1.5.0")]
5425#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5426impl<T> const Default for &mut [T] {
5427    /// Creates a mutable empty slice.
5428    fn default() -> Self {
5429        &mut []
5430    }
5431}
5432
5433#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5434/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5435/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5436/// `str`) to slices, and then this trait will be replaced or abolished.
5437pub trait SlicePattern {
5438    /// The element type of the slice being matched on.
5439    type Item;
5440
5441    /// Currently, the consumers of `SlicePattern` need a slice.
5442    fn as_slice(&self) -> &[Self::Item];
5443}
5444
5445#[stable(feature = "slice_strip", since = "1.51.0")]
5446impl<T> SlicePattern for [T] {
5447    type Item = T;
5448
5449    #[inline]
5450    fn as_slice(&self) -> &[Self::Item] {
5451        self
5452    }
5453}
5454
5455#[stable(feature = "slice_strip", since = "1.51.0")]
5456impl<T, const N: usize> SlicePattern for [T; N] {
5457    type Item = T;
5458
5459    #[inline]
5460    fn as_slice(&self) -> &[Self::Item] {
5461        self
5462    }
5463}
5464
5465/// This checks every index against each other, and against `len`.
5466///
5467/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5468/// comparison operations.
5469#[inline]
5470fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5471    indices: &[I; N],
5472    len: usize,
5473) -> Result<(), GetDisjointMutError> {
5474    // NB: The optimizer should inline the loops into a sequence
5475    // of instructions without additional branching.
5476    for (i, idx) in indices.iter().enumerate() {
5477        if !idx.is_in_bounds(len) {
5478            return Err(GetDisjointMutError::IndexOutOfBounds);
5479        }
5480        for idx2 in &indices[..i] {
5481            if idx.is_overlapping(idx2) {
5482                return Err(GetDisjointMutError::OverlappingIndices);
5483            }
5484        }
5485    }
5486    Ok(())
5487}
5488
5489/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5490///
5491/// It indicates one of two possible errors:
5492/// - An index is out-of-bounds.
5493/// - The same index appeared multiple times in the array
5494///   (or different but overlapping indices when ranges are provided).
5495///
5496/// # Examples
5497///
5498/// ```
5499/// use std::slice::GetDisjointMutError;
5500///
5501/// let v = &mut [1, 2, 3];
5502/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5503/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5504/// ```
5505#[stable(feature = "get_many_mut", since = "1.86.0")]
5506#[derive(Debug, Clone, PartialEq, Eq)]
5507pub enum GetDisjointMutError {
5508    /// An index provided was out-of-bounds for the slice.
5509    IndexOutOfBounds,
5510    /// Two indices provided were overlapping.
5511    OverlappingIndices,
5512}
5513
5514#[stable(feature = "get_many_mut", since = "1.86.0")]
5515impl fmt::Display for GetDisjointMutError {
5516    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5517        let msg = match self {
5518            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5519            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5520        };
5521        fmt::Display::fmt(msg, f)
5522    }
5523}
5524
5525mod private_get_disjoint_mut_index {
5526    use super::{Range, RangeInclusive, range};
5527
5528    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5529    pub trait Sealed {}
5530
5531    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5532    impl Sealed for usize {}
5533    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5534    impl Sealed for Range<usize> {}
5535    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5536    impl Sealed for RangeInclusive<usize> {}
5537    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5538    impl Sealed for range::Range<usize> {}
5539    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5540    impl Sealed for range::RangeInclusive<usize> {}
5541}
5542
5543/// A helper trait for `<[T]>::get_disjoint_mut()`.
5544///
5545/// # Safety
5546///
5547/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5548/// it must be safe to index the slice with the indices.
5549#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5550pub unsafe trait GetDisjointMutIndex:
5551    Clone + private_get_disjoint_mut_index::Sealed
5552{
5553    /// Returns `true` if `self` is in bounds for `len` slice elements.
5554    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5555    fn is_in_bounds(&self, len: usize) -> bool;
5556
5557    /// Returns `true` if `self` overlaps with `other`.
5558    ///
5559    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5560    /// but do consider them to overlap in the middle.
5561    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5562    fn is_overlapping(&self, other: &Self) -> bool;
5563}
5564
5565#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5566// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5567unsafe impl GetDisjointMutIndex for usize {
5568    #[inline]
5569    fn is_in_bounds(&self, len: usize) -> bool {
5570        *self < len
5571    }
5572
5573    #[inline]
5574    fn is_overlapping(&self, other: &Self) -> bool {
5575        *self == *other
5576    }
5577}
5578
5579#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5580// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5581unsafe impl GetDisjointMutIndex for Range<usize> {
5582    #[inline]
5583    fn is_in_bounds(&self, len: usize) -> bool {
5584        (self.start <= self.end) & (self.end <= len)
5585    }
5586
5587    #[inline]
5588    fn is_overlapping(&self, other: &Self) -> bool {
5589        (self.start < other.end) & (other.start < self.end)
5590    }
5591}
5592
5593#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5594// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5595unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5596    #[inline]
5597    fn is_in_bounds(&self, len: usize) -> bool {
5598        (self.start <= self.end) & (self.end < len)
5599    }
5600
5601    #[inline]
5602    fn is_overlapping(&self, other: &Self) -> bool {
5603        (self.start <= other.end) & (other.start <= self.end)
5604    }
5605}
5606
5607#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5608// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5609unsafe impl GetDisjointMutIndex for range::Range<usize> {
5610    #[inline]
5611    fn is_in_bounds(&self, len: usize) -> bool {
5612        Range::from(*self).is_in_bounds(len)
5613    }
5614
5615    #[inline]
5616    fn is_overlapping(&self, other: &Self) -> bool {
5617        Range::from(*self).is_overlapping(&Range::from(*other))
5618    }
5619}
5620
5621#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5622// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5623unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5624    #[inline]
5625    fn is_in_bounds(&self, len: usize) -> bool {
5626        RangeInclusive::from(*self).is_in_bounds(len)
5627    }
5628
5629    #[inline]
5630    fn is_overlapping(&self, other: &Self) -> bool {
5631        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5632    }
5633}