core/cmp.rs
1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//! `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//! partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//! equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//! partial orderings between values, respectively. Implementing them overloads
13//! the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//! [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//! greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//! to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::{Destruct, PointeeSized};
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67/// implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70/// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71/// This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72/// `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116/// Paperback,
117/// Hardback,
118/// Ebook,
119/// }
120///
121/// struct Book {
122/// isbn: i32,
123/// format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127/// fn eq(&self, other: &Self) -> bool {
128/// self.isbn == other.isbn
129/// }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149/// Paperback,
150/// Hardback,
151/// Ebook,
152/// }
153///
154/// struct Book {
155/// isbn: i32,
156/// format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161/// fn eq(&self, other: &BookFormat) -> bool {
162/// self.format == *other
163/// }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168/// fn eq(&self, other: &Book) -> bool {
169/// *self == other.format
170/// }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193/// Paperback,
194/// Hardback,
195/// Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200/// isbn: i32,
201/// format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205/// fn eq(&self, other: &BookFormat) -> bool {
206/// self.format == *other
207/// }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211/// fn eq(&self, other: &Book) -> bool {
212/// *self == other.format
213/// }
214/// }
215///
216/// fn main() {
217/// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218/// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220/// assert!(b1 == BookFormat::Paperback);
221/// assert!(BookFormat::Paperback == b2);
222///
223/// // The following should hold by transitivity but doesn't.
224/// assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245 message = "can't compare `{Self}` with `{Rhs}`",
246 label = "no implementation for `{Self} == {Rhs}`",
247 append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
251pub const trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
252 /// Tests for `self` and `other` values to be equal, and is used by `==`.
253 #[must_use]
254 #[stable(feature = "rust1", since = "1.0.0")]
255 #[rustc_diagnostic_item = "cmp_partialeq_eq"]
256 fn eq(&self, other: &Rhs) -> bool;
257
258 /// Tests for `!=`. The default implementation is almost always sufficient,
259 /// and should not be overridden without very good reason.
260 #[inline]
261 #[must_use]
262 #[stable(feature = "rust1", since = "1.0.0")]
263 #[rustc_diagnostic_item = "cmp_partialeq_ne"]
264 fn ne(&self, other: &Rhs) -> bool {
265 !self.eq(other)
266 }
267}
268
269/// Derive macro generating an impl of the trait [`PartialEq`].
270/// The behavior of this macro is described in detail [here](PartialEq#derivable).
271#[rustc_builtin_macro]
272#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
273#[allow_internal_unstable(core_intrinsics, structural_match)]
274pub macro PartialEq($item:item) {
275 /* compiler built-in */
276}
277
278/// Trait for comparisons corresponding to [equivalence relations](
279/// https://en.wikipedia.org/wiki/Equivalence_relation).
280///
281/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
282/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
283///
284/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
285/// - transitive: `a == b` and `b == c` implies `a == c`
286///
287/// `Eq`, which builds on top of [`PartialEq`] also implies:
288///
289/// - reflexive: `a == a`
290///
291/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
292///
293/// Violating this property is a logic error. The behavior resulting from a logic error is not
294/// specified, but users of the trait must ensure that such logic errors do *not* result in
295/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
296/// methods.
297///
298/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
299/// because `NaN` != `NaN`.
300///
301/// ## Derivable
302///
303/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
304/// is only informing the compiler that this is an equivalence relation rather than a partial
305/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
306/// always desired.
307///
308/// ## How can I implement `Eq`?
309///
310/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
311/// extra methods:
312///
313/// ```
314/// enum BookFormat {
315/// Paperback,
316/// Hardback,
317/// Ebook,
318/// }
319///
320/// struct Book {
321/// isbn: i32,
322/// format: BookFormat,
323/// }
324///
325/// impl PartialEq for Book {
326/// fn eq(&self, other: &Self) -> bool {
327/// self.isbn == other.isbn
328/// }
329/// }
330///
331/// impl Eq for Book {}
332/// ```
333#[doc(alias = "==")]
334#[doc(alias = "!=")]
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_diagnostic_item = "Eq"]
337#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
338pub const trait Eq: [const] PartialEq<Self> + PointeeSized {
339 // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
340 // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
341 // without using a method on this trait is nearly impossible.
342 //
343 // This should never be implemented by hand.
344 #[doc(hidden)]
345 #[coverage(off)]
346 #[inline]
347 #[stable(feature = "rust1", since = "1.0.0")]
348 fn assert_receiver_is_total_eq(&self) {}
349}
350
351/// Derive macro generating an impl of the trait [`Eq`].
352#[rustc_builtin_macro]
353#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
354#[allow_internal_unstable(core_intrinsics, derive_eq_internals, structural_match)]
355#[allow_internal_unstable(coverage_attribute)]
356pub macro Eq($item:item) {
357 /* compiler built-in */
358}
359
360// FIXME: this struct is used solely by #[derive] to
361// assert that every component of a type implements Eq.
362//
363// This struct should never appear in user code.
364#[doc(hidden)]
365#[allow(missing_debug_implementations)]
366#[unstable(
367 feature = "derive_eq_internals",
368 reason = "deriving hack, should not be public",
369 issue = "none"
370)]
371pub struct AssertParamIsEq<T: Eq + PointeeSized> {
372 _field: crate::marker::PhantomData<T>,
373}
374
375/// An `Ordering` is the result of a comparison between two values.
376///
377/// # Examples
378///
379/// ```
380/// use std::cmp::Ordering;
381///
382/// assert_eq!(1.cmp(&2), Ordering::Less);
383///
384/// assert_eq!(1.cmp(&1), Ordering::Equal);
385///
386/// assert_eq!(2.cmp(&1), Ordering::Greater);
387/// ```
388#[derive(Copy, Debug, Hash)]
389#[derive_const(Clone, Eq, PartialOrd, Ord, PartialEq)]
390#[stable(feature = "rust1", since = "1.0.0")]
391// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
392// It has no special behavior, but does require that the three variants
393// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
394#[lang = "Ordering"]
395#[repr(i8)]
396pub enum Ordering {
397 /// An ordering where a compared value is less than another.
398 #[stable(feature = "rust1", since = "1.0.0")]
399 Less = -1,
400 /// An ordering where a compared value is equal to another.
401 #[stable(feature = "rust1", since = "1.0.0")]
402 Equal = 0,
403 /// An ordering where a compared value is greater than another.
404 #[stable(feature = "rust1", since = "1.0.0")]
405 Greater = 1,
406}
407
408impl Ordering {
409 #[inline]
410 const fn as_raw(self) -> i8 {
411 // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
412 crate::intrinsics::discriminant_value(&self)
413 }
414
415 /// Returns `true` if the ordering is the `Equal` variant.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// use std::cmp::Ordering;
421 ///
422 /// assert_eq!(Ordering::Less.is_eq(), false);
423 /// assert_eq!(Ordering::Equal.is_eq(), true);
424 /// assert_eq!(Ordering::Greater.is_eq(), false);
425 /// ```
426 #[inline]
427 #[must_use]
428 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
429 #[stable(feature = "ordering_helpers", since = "1.53.0")]
430 pub const fn is_eq(self) -> bool {
431 // All the `is_*` methods are implemented as comparisons against zero
432 // to follow how clang's libcxx implements their equivalents in
433 // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
434
435 self.as_raw() == 0
436 }
437
438 /// Returns `true` if the ordering is not the `Equal` variant.
439 ///
440 /// # Examples
441 ///
442 /// ```
443 /// use std::cmp::Ordering;
444 ///
445 /// assert_eq!(Ordering::Less.is_ne(), true);
446 /// assert_eq!(Ordering::Equal.is_ne(), false);
447 /// assert_eq!(Ordering::Greater.is_ne(), true);
448 /// ```
449 #[inline]
450 #[must_use]
451 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
452 #[stable(feature = "ordering_helpers", since = "1.53.0")]
453 pub const fn is_ne(self) -> bool {
454 self.as_raw() != 0
455 }
456
457 /// Returns `true` if the ordering is the `Less` variant.
458 ///
459 /// # Examples
460 ///
461 /// ```
462 /// use std::cmp::Ordering;
463 ///
464 /// assert_eq!(Ordering::Less.is_lt(), true);
465 /// assert_eq!(Ordering::Equal.is_lt(), false);
466 /// assert_eq!(Ordering::Greater.is_lt(), false);
467 /// ```
468 #[inline]
469 #[must_use]
470 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
471 #[stable(feature = "ordering_helpers", since = "1.53.0")]
472 pub const fn is_lt(self) -> bool {
473 self.as_raw() < 0
474 }
475
476 /// Returns `true` if the ordering is the `Greater` variant.
477 ///
478 /// # Examples
479 ///
480 /// ```
481 /// use std::cmp::Ordering;
482 ///
483 /// assert_eq!(Ordering::Less.is_gt(), false);
484 /// assert_eq!(Ordering::Equal.is_gt(), false);
485 /// assert_eq!(Ordering::Greater.is_gt(), true);
486 /// ```
487 #[inline]
488 #[must_use]
489 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
490 #[stable(feature = "ordering_helpers", since = "1.53.0")]
491 pub const fn is_gt(self) -> bool {
492 self.as_raw() > 0
493 }
494
495 /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
496 ///
497 /// # Examples
498 ///
499 /// ```
500 /// use std::cmp::Ordering;
501 ///
502 /// assert_eq!(Ordering::Less.is_le(), true);
503 /// assert_eq!(Ordering::Equal.is_le(), true);
504 /// assert_eq!(Ordering::Greater.is_le(), false);
505 /// ```
506 #[inline]
507 #[must_use]
508 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
509 #[stable(feature = "ordering_helpers", since = "1.53.0")]
510 pub const fn is_le(self) -> bool {
511 self.as_raw() <= 0
512 }
513
514 /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// use std::cmp::Ordering;
520 ///
521 /// assert_eq!(Ordering::Less.is_ge(), false);
522 /// assert_eq!(Ordering::Equal.is_ge(), true);
523 /// assert_eq!(Ordering::Greater.is_ge(), true);
524 /// ```
525 #[inline]
526 #[must_use]
527 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
528 #[stable(feature = "ordering_helpers", since = "1.53.0")]
529 pub const fn is_ge(self) -> bool {
530 self.as_raw() >= 0
531 }
532
533 /// Reverses the `Ordering`.
534 ///
535 /// * `Less` becomes `Greater`.
536 /// * `Greater` becomes `Less`.
537 /// * `Equal` becomes `Equal`.
538 ///
539 /// # Examples
540 ///
541 /// Basic behavior:
542 ///
543 /// ```
544 /// use std::cmp::Ordering;
545 ///
546 /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
547 /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
548 /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
549 /// ```
550 ///
551 /// This method can be used to reverse a comparison:
552 ///
553 /// ```
554 /// let data: &mut [_] = &mut [2, 10, 5, 8];
555 ///
556 /// // sort the array from largest to smallest.
557 /// data.sort_by(|a, b| a.cmp(b).reverse());
558 ///
559 /// let b: &mut [_] = &mut [10, 8, 5, 2];
560 /// assert!(data == b);
561 /// ```
562 #[inline]
563 #[must_use]
564 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
565 #[stable(feature = "rust1", since = "1.0.0")]
566 pub const fn reverse(self) -> Ordering {
567 match self {
568 Less => Greater,
569 Equal => Equal,
570 Greater => Less,
571 }
572 }
573
574 /// Chains two orderings.
575 ///
576 /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
577 ///
578 /// # Examples
579 ///
580 /// ```
581 /// use std::cmp::Ordering;
582 ///
583 /// let result = Ordering::Equal.then(Ordering::Less);
584 /// assert_eq!(result, Ordering::Less);
585 ///
586 /// let result = Ordering::Less.then(Ordering::Equal);
587 /// assert_eq!(result, Ordering::Less);
588 ///
589 /// let result = Ordering::Less.then(Ordering::Greater);
590 /// assert_eq!(result, Ordering::Less);
591 ///
592 /// let result = Ordering::Equal.then(Ordering::Equal);
593 /// assert_eq!(result, Ordering::Equal);
594 ///
595 /// let x: (i64, i64, i64) = (1, 2, 7);
596 /// let y: (i64, i64, i64) = (1, 5, 3);
597 /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
598 ///
599 /// assert_eq!(result, Ordering::Less);
600 /// ```
601 #[inline]
602 #[must_use]
603 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
604 #[stable(feature = "ordering_chaining", since = "1.17.0")]
605 pub const fn then(self, other: Ordering) -> Ordering {
606 match self {
607 Equal => other,
608 _ => self,
609 }
610 }
611
612 /// Chains the ordering with the given function.
613 ///
614 /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
615 /// the result.
616 ///
617 /// # Examples
618 ///
619 /// ```
620 /// use std::cmp::Ordering;
621 ///
622 /// let result = Ordering::Equal.then_with(|| Ordering::Less);
623 /// assert_eq!(result, Ordering::Less);
624 ///
625 /// let result = Ordering::Less.then_with(|| Ordering::Equal);
626 /// assert_eq!(result, Ordering::Less);
627 ///
628 /// let result = Ordering::Less.then_with(|| Ordering::Greater);
629 /// assert_eq!(result, Ordering::Less);
630 ///
631 /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
632 /// assert_eq!(result, Ordering::Equal);
633 ///
634 /// let x: (i64, i64, i64) = (1, 2, 7);
635 /// let y: (i64, i64, i64) = (1, 5, 3);
636 /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
637 ///
638 /// assert_eq!(result, Ordering::Less);
639 /// ```
640 #[inline]
641 #[must_use]
642 #[stable(feature = "ordering_chaining", since = "1.17.0")]
643 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
644 pub const fn then_with<F>(self, f: F) -> Ordering
645 where
646 F: [const] FnOnce() -> Ordering + [const] Destruct,
647 {
648 match self {
649 Equal => f(),
650 _ => self,
651 }
652 }
653}
654
655/// A helper struct for reverse ordering.
656///
657/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
658/// can be used to reverse order a part of a key.
659///
660/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
661///
662/// # Examples
663///
664/// ```
665/// use std::cmp::Reverse;
666///
667/// let mut v = vec![1, 2, 3, 4, 5, 6];
668/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
669/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
670/// ```
671#[derive(Copy, Debug, Hash)]
672#[derive_const(PartialEq, Eq, Default)]
673#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
674#[repr(transparent)]
675pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
676
677#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
678#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
679impl<T: [const] PartialOrd> const PartialOrd for Reverse<T> {
680 #[inline]
681 fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
682 other.0.partial_cmp(&self.0)
683 }
684
685 #[inline]
686 fn lt(&self, other: &Self) -> bool {
687 other.0 < self.0
688 }
689 #[inline]
690 fn le(&self, other: &Self) -> bool {
691 other.0 <= self.0
692 }
693 #[inline]
694 fn gt(&self, other: &Self) -> bool {
695 other.0 > self.0
696 }
697 #[inline]
698 fn ge(&self, other: &Self) -> bool {
699 other.0 >= self.0
700 }
701}
702
703#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
704#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
705impl<T: [const] Ord> const Ord for Reverse<T> {
706 #[inline]
707 fn cmp(&self, other: &Reverse<T>) -> Ordering {
708 other.0.cmp(&self.0)
709 }
710}
711
712#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
713impl<T: Clone> Clone for Reverse<T> {
714 #[inline]
715 fn clone(&self) -> Reverse<T> {
716 Reverse(self.0.clone())
717 }
718
719 #[inline]
720 fn clone_from(&mut self, source: &Self) {
721 self.0.clone_from(&source.0)
722 }
723}
724
725/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
726///
727/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
728/// `min`, and `clamp` are consistent with `cmp`:
729///
730/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
731/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
732/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
733/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
734/// implementation).
735///
736/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
737/// specified, but users of the trait must ensure that such logic errors do *not* result in
738/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
739/// methods.
740///
741/// ## Corollaries
742///
743/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
744///
745/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
746/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
747/// `>`.
748///
749/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
750/// conforms to mathematical equality, it also defines a strict [total order].
751///
752/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
753/// [total order]: https://en.wikipedia.org/wiki/Total_order
754///
755/// ## Derivable
756///
757/// This trait can be used with `#[derive]`.
758///
759/// When `derive`d on structs, it will produce a
760/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
761/// top-to-bottom declaration order of the struct's members.
762///
763/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
764/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
765/// top, and largest for variants at the bottom. Here's an example:
766///
767/// ```
768/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
769/// enum E {
770/// Top,
771/// Bottom,
772/// }
773///
774/// assert!(E::Top < E::Bottom);
775/// ```
776///
777/// However, manually setting the discriminants can override this default behavior:
778///
779/// ```
780/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
781/// enum E {
782/// Top = 2,
783/// Bottom = 1,
784/// }
785///
786/// assert!(E::Bottom < E::Top);
787/// ```
788///
789/// ## Lexicographical comparison
790///
791/// Lexicographical comparison is an operation with the following properties:
792/// - Two sequences are compared element by element.
793/// - The first mismatching element defines which sequence is lexicographically less or greater
794/// than the other.
795/// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
796/// the other.
797/// - If two sequences have equivalent elements and are of the same length, then the sequences are
798/// lexicographically equal.
799/// - An empty sequence is lexicographically less than any non-empty sequence.
800/// - Two empty sequences are lexicographically equal.
801///
802/// ## How can I implement `Ord`?
803///
804/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
805///
806/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
807/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
808/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
809/// implement it manually, you should manually implement all four traits, based on the
810/// implementation of `Ord`.
811///
812/// Here's an example where you want to define the `Character` comparison by `health` and
813/// `experience` only, disregarding the field `mana`:
814///
815/// ```
816/// use std::cmp::Ordering;
817///
818/// struct Character {
819/// health: u32,
820/// experience: u32,
821/// mana: f32,
822/// }
823///
824/// impl Ord for Character {
825/// fn cmp(&self, other: &Self) -> Ordering {
826/// self.experience
827/// .cmp(&other.experience)
828/// .then(self.health.cmp(&other.health))
829/// }
830/// }
831///
832/// impl PartialOrd for Character {
833/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
834/// Some(self.cmp(other))
835/// }
836/// }
837///
838/// impl PartialEq for Character {
839/// fn eq(&self, other: &Self) -> bool {
840/// self.health == other.health && self.experience == other.experience
841/// }
842/// }
843///
844/// impl Eq for Character {}
845/// ```
846///
847/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
848/// `slice::sort_by_key`.
849///
850/// ## Examples of incorrect `Ord` implementations
851///
852/// ```
853/// use std::cmp::Ordering;
854///
855/// #[derive(Debug)]
856/// struct Character {
857/// health: f32,
858/// }
859///
860/// impl Ord for Character {
861/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
862/// if self.health < other.health {
863/// Ordering::Less
864/// } else if self.health > other.health {
865/// Ordering::Greater
866/// } else {
867/// Ordering::Equal
868/// }
869/// }
870/// }
871///
872/// impl PartialOrd for Character {
873/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
874/// Some(self.cmp(other))
875/// }
876/// }
877///
878/// impl PartialEq for Character {
879/// fn eq(&self, other: &Self) -> bool {
880/// self.health == other.health
881/// }
882/// }
883///
884/// impl Eq for Character {}
885///
886/// let a = Character { health: 4.5 };
887/// let b = Character { health: f32::NAN };
888///
889/// // Mistake: floating-point values do not form a total order and using the built-in comparison
890/// // operands to implement `Ord` irregardless of that reality does not change it. Use
891/// // `f32::total_cmp` if you need a total order for floating-point values.
892///
893/// // Reflexivity requirement of `Ord` is not given.
894/// assert!(a == a);
895/// assert!(b != b);
896///
897/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
898/// // true, not both or neither.
899/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
900/// ```
901///
902/// ```
903/// use std::cmp::Ordering;
904///
905/// #[derive(Debug)]
906/// struct Character {
907/// health: u32,
908/// experience: u32,
909/// }
910///
911/// impl PartialOrd for Character {
912/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
913/// Some(self.cmp(other))
914/// }
915/// }
916///
917/// impl Ord for Character {
918/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
919/// if self.health < 50 {
920/// self.health.cmp(&other.health)
921/// } else {
922/// self.experience.cmp(&other.experience)
923/// }
924/// }
925/// }
926///
927/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
928/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
929/// impl PartialEq for Character {
930/// fn eq(&self, other: &Self) -> bool {
931/// self.cmp(other) == Ordering::Equal
932/// }
933/// }
934///
935/// impl Eq for Character {}
936///
937/// let a = Character {
938/// health: 3,
939/// experience: 5,
940/// };
941/// let b = Character {
942/// health: 10,
943/// experience: 77,
944/// };
945/// let c = Character {
946/// health: 143,
947/// experience: 2,
948/// };
949///
950/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
951/// // `self.health`, the resulting order is not total.
952///
953/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
954/// // c, by transitive property a must also be smaller than c.
955/// assert!(a < b && b < c && c < a);
956///
957/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
958/// // true, not both or neither.
959/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
960/// ```
961///
962/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
963/// [`PartialOrd`] and [`PartialEq`] to disagree.
964///
965/// [`cmp`]: Ord::cmp
966#[doc(alias = "<")]
967#[doc(alias = ">")]
968#[doc(alias = "<=")]
969#[doc(alias = ">=")]
970#[stable(feature = "rust1", since = "1.0.0")]
971#[rustc_diagnostic_item = "Ord"]
972#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
973pub const trait Ord: [const] Eq + [const] PartialOrd<Self> + PointeeSized {
974 /// This method returns an [`Ordering`] between `self` and `other`.
975 ///
976 /// By convention, `self.cmp(&other)` returns the ordering matching the expression
977 /// `self <operator> other` if true.
978 ///
979 /// # Examples
980 ///
981 /// ```
982 /// use std::cmp::Ordering;
983 ///
984 /// assert_eq!(5.cmp(&10), Ordering::Less);
985 /// assert_eq!(10.cmp(&5), Ordering::Greater);
986 /// assert_eq!(5.cmp(&5), Ordering::Equal);
987 /// ```
988 #[must_use]
989 #[stable(feature = "rust1", since = "1.0.0")]
990 #[rustc_diagnostic_item = "ord_cmp_method"]
991 fn cmp(&self, other: &Self) -> Ordering;
992
993 /// Compares and returns the maximum of two values.
994 ///
995 /// Returns the second argument if the comparison determines them to be equal.
996 ///
997 /// # Examples
998 ///
999 /// ```
1000 /// assert_eq!(1.max(2), 2);
1001 /// assert_eq!(2.max(2), 2);
1002 /// ```
1003 /// ```
1004 /// use std::cmp::Ordering;
1005 ///
1006 /// #[derive(Eq)]
1007 /// struct Equal(&'static str);
1008 ///
1009 /// impl PartialEq for Equal {
1010 /// fn eq(&self, other: &Self) -> bool { true }
1011 /// }
1012 /// impl PartialOrd for Equal {
1013 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1014 /// }
1015 /// impl Ord for Equal {
1016 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1017 /// }
1018 ///
1019 /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1020 /// ```
1021 #[stable(feature = "ord_max_min", since = "1.21.0")]
1022 #[inline]
1023 #[must_use]
1024 #[rustc_diagnostic_item = "cmp_ord_max"]
1025 fn max(self, other: Self) -> Self
1026 where
1027 Self: Sized + [const] Destruct,
1028 {
1029 if other < self { self } else { other }
1030 }
1031
1032 /// Compares and returns the minimum of two values.
1033 ///
1034 /// Returns the first argument if the comparison determines them to be equal.
1035 ///
1036 /// # Examples
1037 ///
1038 /// ```
1039 /// assert_eq!(1.min(2), 1);
1040 /// assert_eq!(2.min(2), 2);
1041 /// ```
1042 /// ```
1043 /// use std::cmp::Ordering;
1044 ///
1045 /// #[derive(Eq)]
1046 /// struct Equal(&'static str);
1047 ///
1048 /// impl PartialEq for Equal {
1049 /// fn eq(&self, other: &Self) -> bool { true }
1050 /// }
1051 /// impl PartialOrd for Equal {
1052 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1053 /// }
1054 /// impl Ord for Equal {
1055 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1056 /// }
1057 ///
1058 /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1059 /// ```
1060 #[stable(feature = "ord_max_min", since = "1.21.0")]
1061 #[inline]
1062 #[must_use]
1063 #[rustc_diagnostic_item = "cmp_ord_min"]
1064 fn min(self, other: Self) -> Self
1065 where
1066 Self: Sized + [const] Destruct,
1067 {
1068 if other < self { other } else { self }
1069 }
1070
1071 /// Restrict a value to a certain interval.
1072 ///
1073 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1074 /// less than `min`. Otherwise this returns `self`.
1075 ///
1076 /// # Panics
1077 ///
1078 /// Panics if `min > max`.
1079 ///
1080 /// # Examples
1081 ///
1082 /// ```
1083 /// assert_eq!((-3).clamp(-2, 1), -2);
1084 /// assert_eq!(0.clamp(-2, 1), 0);
1085 /// assert_eq!(2.clamp(-2, 1), 1);
1086 /// ```
1087 #[must_use]
1088 #[inline]
1089 #[stable(feature = "clamp", since = "1.50.0")]
1090 fn clamp(self, min: Self, max: Self) -> Self
1091 where
1092 Self: Sized + [const] Destruct,
1093 {
1094 assert!(min <= max);
1095 if self < min {
1096 min
1097 } else if self > max {
1098 max
1099 } else {
1100 self
1101 }
1102 }
1103}
1104
1105/// Derive macro generating an impl of the trait [`Ord`].
1106/// The behavior of this macro is described in detail [here](Ord#derivable).
1107#[rustc_builtin_macro]
1108#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1109#[allow_internal_unstable(core_intrinsics)]
1110pub macro Ord($item:item) {
1111 /* compiler built-in */
1112}
1113
1114/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1115///
1116/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1117/// `>=` operators, respectively.
1118///
1119/// This trait should **only** contain the comparison logic for a type **if one plans on only
1120/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1121/// and this trait implemented with `Some(self.cmp(other))`.
1122///
1123/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1124/// The following conditions must hold:
1125///
1126/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1127/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1128/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1129/// 4. `a <= b` if and only if `a < b || a == b`
1130/// 5. `a >= b` if and only if `a > b || a == b`
1131/// 6. `a != b` if and only if `!(a == b)`.
1132///
1133/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1134/// by [`PartialEq`].
1135///
1136/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1137/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1138/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1139///
1140/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1141/// `A`, `B`, `C`):
1142///
1143/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1144/// < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1145/// work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1146/// PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1147/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1148/// a`.
1149///
1150/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1151/// to exist, but these requirements apply whenever they do exist.
1152///
1153/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1154/// specified, but users of the trait must ensure that such logic errors do *not* result in
1155/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1156/// methods.
1157///
1158/// ## Cross-crate considerations
1159///
1160/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1161/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1162/// standard library). The recommendation is to never implement this trait for a foreign type. In
1163/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1164/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1165///
1166/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1167/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1168/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1169/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1170/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1171/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1172/// transitivity.
1173///
1174/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1175/// more `PartialOrd` implementations can cause build failures in downstream crates.
1176///
1177/// ## Corollaries
1178///
1179/// The following corollaries follow from the above requirements:
1180///
1181/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1182/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1183/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1184///
1185/// ## Strict and non-strict partial orders
1186///
1187/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1188/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1189/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1190/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1191///
1192/// ```
1193/// let a = f64::sqrt(-1.0);
1194/// assert_eq!(a <= a, false);
1195/// ```
1196///
1197/// ## Derivable
1198///
1199/// This trait can be used with `#[derive]`.
1200///
1201/// When `derive`d on structs, it will produce a
1202/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1203/// top-to-bottom declaration order of the struct's members.
1204///
1205/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1206/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1207/// top, and largest for variants at the bottom. Here's an example:
1208///
1209/// ```
1210/// #[derive(PartialEq, PartialOrd)]
1211/// enum E {
1212/// Top,
1213/// Bottom,
1214/// }
1215///
1216/// assert!(E::Top < E::Bottom);
1217/// ```
1218///
1219/// However, manually setting the discriminants can override this default behavior:
1220///
1221/// ```
1222/// #[derive(PartialEq, PartialOrd)]
1223/// enum E {
1224/// Top = 2,
1225/// Bottom = 1,
1226/// }
1227///
1228/// assert!(E::Bottom < E::Top);
1229/// ```
1230///
1231/// ## How can I implement `PartialOrd`?
1232///
1233/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1234/// generated from default implementations.
1235///
1236/// However it remains possible to implement the others separately for types which do not have a
1237/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1238/// (cf. IEEE 754-2008 section 5.11).
1239///
1240/// `PartialOrd` requires your type to be [`PartialEq`].
1241///
1242/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1243///
1244/// ```
1245/// use std::cmp::Ordering;
1246///
1247/// struct Person {
1248/// id: u32,
1249/// name: String,
1250/// height: u32,
1251/// }
1252///
1253/// impl PartialOrd for Person {
1254/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1255/// Some(self.cmp(other))
1256/// }
1257/// }
1258///
1259/// impl Ord for Person {
1260/// fn cmp(&self, other: &Self) -> Ordering {
1261/// self.height.cmp(&other.height)
1262/// }
1263/// }
1264///
1265/// impl PartialEq for Person {
1266/// fn eq(&self, other: &Self) -> bool {
1267/// self.height == other.height
1268/// }
1269/// }
1270///
1271/// impl Eq for Person {}
1272/// ```
1273///
1274/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1275/// `Person` types who have a floating-point `height` field that is the only field to be used for
1276/// sorting:
1277///
1278/// ```
1279/// use std::cmp::Ordering;
1280///
1281/// struct Person {
1282/// id: u32,
1283/// name: String,
1284/// height: f64,
1285/// }
1286///
1287/// impl PartialOrd for Person {
1288/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1289/// self.height.partial_cmp(&other.height)
1290/// }
1291/// }
1292///
1293/// impl PartialEq for Person {
1294/// fn eq(&self, other: &Self) -> bool {
1295/// self.height == other.height
1296/// }
1297/// }
1298/// ```
1299///
1300/// ## Examples of incorrect `PartialOrd` implementations
1301///
1302/// ```
1303/// use std::cmp::Ordering;
1304///
1305/// #[derive(PartialEq, Debug)]
1306/// struct Character {
1307/// health: u32,
1308/// experience: u32,
1309/// }
1310///
1311/// impl PartialOrd for Character {
1312/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1313/// Some(self.health.cmp(&other.health))
1314/// }
1315/// }
1316///
1317/// let a = Character {
1318/// health: 10,
1319/// experience: 5,
1320/// };
1321/// let b = Character {
1322/// health: 10,
1323/// experience: 77,
1324/// };
1325///
1326/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1327///
1328/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1329/// assert_ne!(a, b); // a != b according to `PartialEq`.
1330/// ```
1331///
1332/// # Examples
1333///
1334/// ```
1335/// let x: u32 = 0;
1336/// let y: u32 = 1;
1337///
1338/// assert_eq!(x < y, true);
1339/// assert_eq!(x.lt(&y), true);
1340/// ```
1341///
1342/// [`partial_cmp`]: PartialOrd::partial_cmp
1343/// [`cmp`]: Ord::cmp
1344#[lang = "partial_ord"]
1345#[stable(feature = "rust1", since = "1.0.0")]
1346#[doc(alias = ">")]
1347#[doc(alias = "<")]
1348#[doc(alias = "<=")]
1349#[doc(alias = ">=")]
1350#[rustc_on_unimplemented(
1351 message = "can't compare `{Self}` with `{Rhs}`",
1352 label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1353 append_const_msg
1354)]
1355#[rustc_diagnostic_item = "PartialOrd"]
1356#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1357#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1358pub const trait PartialOrd<Rhs: PointeeSized = Self>:
1359 [const] PartialEq<Rhs> + PointeeSized
1360{
1361 /// This method returns an ordering between `self` and `other` values if one exists.
1362 ///
1363 /// # Examples
1364 ///
1365 /// ```
1366 /// use std::cmp::Ordering;
1367 ///
1368 /// let result = 1.0.partial_cmp(&2.0);
1369 /// assert_eq!(result, Some(Ordering::Less));
1370 ///
1371 /// let result = 1.0.partial_cmp(&1.0);
1372 /// assert_eq!(result, Some(Ordering::Equal));
1373 ///
1374 /// let result = 2.0.partial_cmp(&1.0);
1375 /// assert_eq!(result, Some(Ordering::Greater));
1376 /// ```
1377 ///
1378 /// When comparison is impossible:
1379 ///
1380 /// ```
1381 /// let result = f64::NAN.partial_cmp(&1.0);
1382 /// assert_eq!(result, None);
1383 /// ```
1384 #[must_use]
1385 #[stable(feature = "rust1", since = "1.0.0")]
1386 #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1387 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1388
1389 /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1390 ///
1391 /// # Examples
1392 ///
1393 /// ```
1394 /// assert_eq!(1.0 < 1.0, false);
1395 /// assert_eq!(1.0 < 2.0, true);
1396 /// assert_eq!(2.0 < 1.0, false);
1397 /// ```
1398 #[inline]
1399 #[must_use]
1400 #[stable(feature = "rust1", since = "1.0.0")]
1401 #[rustc_diagnostic_item = "cmp_partialord_lt"]
1402 fn lt(&self, other: &Rhs) -> bool {
1403 self.partial_cmp(other).is_some_and(Ordering::is_lt)
1404 }
1405
1406 /// Tests less than or equal to (for `self` and `other`) and is used by the
1407 /// `<=` operator.
1408 ///
1409 /// # Examples
1410 ///
1411 /// ```
1412 /// assert_eq!(1.0 <= 1.0, true);
1413 /// assert_eq!(1.0 <= 2.0, true);
1414 /// assert_eq!(2.0 <= 1.0, false);
1415 /// ```
1416 #[inline]
1417 #[must_use]
1418 #[stable(feature = "rust1", since = "1.0.0")]
1419 #[rustc_diagnostic_item = "cmp_partialord_le"]
1420 fn le(&self, other: &Rhs) -> bool {
1421 self.partial_cmp(other).is_some_and(Ordering::is_le)
1422 }
1423
1424 /// Tests greater than (for `self` and `other`) and is used by the `>`
1425 /// operator.
1426 ///
1427 /// # Examples
1428 ///
1429 /// ```
1430 /// assert_eq!(1.0 > 1.0, false);
1431 /// assert_eq!(1.0 > 2.0, false);
1432 /// assert_eq!(2.0 > 1.0, true);
1433 /// ```
1434 #[inline]
1435 #[must_use]
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 #[rustc_diagnostic_item = "cmp_partialord_gt"]
1438 fn gt(&self, other: &Rhs) -> bool {
1439 self.partial_cmp(other).is_some_and(Ordering::is_gt)
1440 }
1441
1442 /// Tests greater than or equal to (for `self` and `other`) and is used by
1443 /// the `>=` operator.
1444 ///
1445 /// # Examples
1446 ///
1447 /// ```
1448 /// assert_eq!(1.0 >= 1.0, true);
1449 /// assert_eq!(1.0 >= 2.0, false);
1450 /// assert_eq!(2.0 >= 1.0, true);
1451 /// ```
1452 #[inline]
1453 #[must_use]
1454 #[stable(feature = "rust1", since = "1.0.0")]
1455 #[rustc_diagnostic_item = "cmp_partialord_ge"]
1456 fn ge(&self, other: &Rhs) -> bool {
1457 self.partial_cmp(other).is_some_and(Ordering::is_ge)
1458 }
1459
1460 /// If `self == other`, returns `ControlFlow::Continue(())`.
1461 /// Otherwise, returns `ControlFlow::Break(self < other)`.
1462 ///
1463 /// This is useful for chaining together calls when implementing a lexical
1464 /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1465 /// check `==` and `<` separately to do rather than needing to calculate
1466 /// (then optimize out) the three-way `Ordering` result.
1467 #[inline]
1468 // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1469 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1470 #[doc(hidden)]
1471 fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1472 default_chaining_impl(self, other, Ordering::is_lt)
1473 }
1474
1475 /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1476 #[inline]
1477 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1478 #[doc(hidden)]
1479 fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1480 default_chaining_impl(self, other, Ordering::is_le)
1481 }
1482
1483 /// Same as `__chaining_lt`, but for `>` instead of `<`.
1484 #[inline]
1485 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1486 #[doc(hidden)]
1487 fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1488 default_chaining_impl(self, other, Ordering::is_gt)
1489 }
1490
1491 /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1492 #[inline]
1493 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1494 #[doc(hidden)]
1495 fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1496 default_chaining_impl(self, other, Ordering::is_ge)
1497 }
1498}
1499
1500#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1501const fn default_chaining_impl<T, U>(
1502 lhs: &T,
1503 rhs: &U,
1504 p: impl [const] FnOnce(Ordering) -> bool + [const] Destruct,
1505) -> ControlFlow<bool>
1506where
1507 T: [const] PartialOrd<U> + PointeeSized,
1508 U: PointeeSized,
1509{
1510 // It's important that this only call `partial_cmp` once, not call `eq` then
1511 // one of the relational operators. We don't want to `bcmp`-then-`memcp` a
1512 // `String`, for example, or similarly for other data structures (#108157).
1513 match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1514 Some(Equal) => ControlFlow::Continue(()),
1515 Some(c) => ControlFlow::Break(p(c)),
1516 None => ControlFlow::Break(false),
1517 }
1518}
1519
1520/// Derive macro generating an impl of the trait [`PartialOrd`].
1521/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1522#[rustc_builtin_macro]
1523#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1524#[allow_internal_unstable(core_intrinsics)]
1525pub macro PartialOrd($item:item) {
1526 /* compiler built-in */
1527}
1528
1529/// Compares and returns the minimum of two values.
1530///
1531/// Returns the first argument if the comparison determines them to be equal.
1532///
1533/// Internally uses an alias to [`Ord::min`].
1534///
1535/// # Examples
1536///
1537/// ```
1538/// use std::cmp;
1539///
1540/// assert_eq!(cmp::min(1, 2), 1);
1541/// assert_eq!(cmp::min(2, 2), 2);
1542/// ```
1543/// ```
1544/// use std::cmp::{self, Ordering};
1545///
1546/// #[derive(Eq)]
1547/// struct Equal(&'static str);
1548///
1549/// impl PartialEq for Equal {
1550/// fn eq(&self, other: &Self) -> bool { true }
1551/// }
1552/// impl PartialOrd for Equal {
1553/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1554/// }
1555/// impl Ord for Equal {
1556/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1557/// }
1558///
1559/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1560/// ```
1561#[inline]
1562#[must_use]
1563#[stable(feature = "rust1", since = "1.0.0")]
1564#[rustc_diagnostic_item = "cmp_min"]
1565#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1566pub const fn min<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1567 v1.min(v2)
1568}
1569
1570/// Returns the minimum of two values with respect to the specified comparison function.
1571///
1572/// Returns the first argument if the comparison determines them to be equal.
1573///
1574/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1575/// always passed as the first argument and `v2` as the second.
1576///
1577/// # Examples
1578///
1579/// ```
1580/// use std::cmp;
1581///
1582/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1583///
1584/// let result = cmp::min_by(2, -1, abs_cmp);
1585/// assert_eq!(result, -1);
1586///
1587/// let result = cmp::min_by(2, -3, abs_cmp);
1588/// assert_eq!(result, 2);
1589///
1590/// let result = cmp::min_by(1, -1, abs_cmp);
1591/// assert_eq!(result, 1);
1592/// ```
1593#[inline]
1594#[must_use]
1595#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1596#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1597pub const fn min_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1598 v1: T,
1599 v2: T,
1600 compare: F,
1601) -> T {
1602 if compare(&v1, &v2).is_le() { v1 } else { v2 }
1603}
1604
1605/// Returns the element that gives the minimum value from the specified function.
1606///
1607/// Returns the first argument if the comparison determines them to be equal.
1608///
1609/// # Examples
1610///
1611/// ```
1612/// use std::cmp;
1613///
1614/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1615/// assert_eq!(result, -1);
1616///
1617/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1618/// assert_eq!(result, 2);
1619///
1620/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1621/// assert_eq!(result, 1);
1622/// ```
1623#[inline]
1624#[must_use]
1625#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1626#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1627pub const fn min_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1628where
1629 T: [const] Destruct,
1630 F: [const] FnMut(&T) -> K + [const] Destruct,
1631 K: [const] Ord + [const] Destruct,
1632{
1633 if f(&v2) < f(&v1) { v2 } else { v1 }
1634}
1635
1636/// Compares and returns the maximum of two values.
1637///
1638/// Returns the second argument if the comparison determines them to be equal.
1639///
1640/// Internally uses an alias to [`Ord::max`].
1641///
1642/// # Examples
1643///
1644/// ```
1645/// use std::cmp;
1646///
1647/// assert_eq!(cmp::max(1, 2), 2);
1648/// assert_eq!(cmp::max(2, 2), 2);
1649/// ```
1650/// ```
1651/// use std::cmp::{self, Ordering};
1652///
1653/// #[derive(Eq)]
1654/// struct Equal(&'static str);
1655///
1656/// impl PartialEq for Equal {
1657/// fn eq(&self, other: &Self) -> bool { true }
1658/// }
1659/// impl PartialOrd for Equal {
1660/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1661/// }
1662/// impl Ord for Equal {
1663/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1664/// }
1665///
1666/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1667/// ```
1668#[inline]
1669#[must_use]
1670#[stable(feature = "rust1", since = "1.0.0")]
1671#[rustc_diagnostic_item = "cmp_max"]
1672#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1673pub const fn max<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1674 v1.max(v2)
1675}
1676
1677/// Returns the maximum of two values with respect to the specified comparison function.
1678///
1679/// Returns the second argument if the comparison determines them to be equal.
1680///
1681/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1682/// always passed as the first argument and `v2` as the second.
1683///
1684/// # Examples
1685///
1686/// ```
1687/// use std::cmp;
1688///
1689/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1690///
1691/// let result = cmp::max_by(3, -2, abs_cmp) ;
1692/// assert_eq!(result, 3);
1693///
1694/// let result = cmp::max_by(1, -2, abs_cmp);
1695/// assert_eq!(result, -2);
1696///
1697/// let result = cmp::max_by(1, -1, abs_cmp);
1698/// assert_eq!(result, -1);
1699/// ```
1700#[inline]
1701#[must_use]
1702#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1703#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1704pub const fn max_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1705 v1: T,
1706 v2: T,
1707 compare: F,
1708) -> T {
1709 if compare(&v1, &v2).is_gt() { v1 } else { v2 }
1710}
1711
1712/// Returns the element that gives the maximum value from the specified function.
1713///
1714/// Returns the second argument if the comparison determines them to be equal.
1715///
1716/// # Examples
1717///
1718/// ```
1719/// use std::cmp;
1720///
1721/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1722/// assert_eq!(result, 3);
1723///
1724/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1725/// assert_eq!(result, -2);
1726///
1727/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1728/// assert_eq!(result, -1);
1729/// ```
1730#[inline]
1731#[must_use]
1732#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1733#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1734pub const fn max_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1735where
1736 T: [const] Destruct,
1737 F: [const] FnMut(&T) -> K + [const] Destruct,
1738 K: [const] Ord + [const] Destruct,
1739{
1740 if f(&v2) < f(&v1) { v1 } else { v2 }
1741}
1742
1743/// Compares and sorts two values, returning minimum and maximum.
1744///
1745/// Returns `[v1, v2]` if the comparison determines them to be equal.
1746///
1747/// # Examples
1748///
1749/// ```
1750/// #![feature(cmp_minmax)]
1751/// use std::cmp;
1752///
1753/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1754/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1755///
1756/// // You can destructure the result using array patterns
1757/// let [min, max] = cmp::minmax(42, 17);
1758/// assert_eq!(min, 17);
1759/// assert_eq!(max, 42);
1760/// ```
1761/// ```
1762/// #![feature(cmp_minmax)]
1763/// use std::cmp::{self, Ordering};
1764///
1765/// #[derive(Eq)]
1766/// struct Equal(&'static str);
1767///
1768/// impl PartialEq for Equal {
1769/// fn eq(&self, other: &Self) -> bool { true }
1770/// }
1771/// impl PartialOrd for Equal {
1772/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1773/// }
1774/// impl Ord for Equal {
1775/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1776/// }
1777///
1778/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1779/// ```
1780#[inline]
1781#[must_use]
1782#[unstable(feature = "cmp_minmax", issue = "115939")]
1783#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1784pub const fn minmax<T>(v1: T, v2: T) -> [T; 2]
1785where
1786 T: [const] Ord,
1787{
1788 if v2 < v1 { [v2, v1] } else { [v1, v2] }
1789}
1790
1791/// Returns minimum and maximum values with respect to the specified comparison function.
1792///
1793/// Returns `[v1, v2]` if the comparison determines them to be equal.
1794///
1795/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1796/// always passed as the first argument and `v2` as the second.
1797///
1798/// # Examples
1799///
1800/// ```
1801/// #![feature(cmp_minmax)]
1802/// use std::cmp;
1803///
1804/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1805///
1806/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1807/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1808/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1809///
1810/// // You can destructure the result using array patterns
1811/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1812/// assert_eq!(min, 17);
1813/// assert_eq!(max, -42);
1814/// ```
1815#[inline]
1816#[must_use]
1817#[unstable(feature = "cmp_minmax", issue = "115939")]
1818#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1819pub const fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1820where
1821 F: [const] FnOnce(&T, &T) -> Ordering,
1822{
1823 if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
1824}
1825
1826/// Returns minimum and maximum values with respect to the specified key function.
1827///
1828/// Returns `[v1, v2]` if the comparison determines them to be equal.
1829///
1830/// # Examples
1831///
1832/// ```
1833/// #![feature(cmp_minmax)]
1834/// use std::cmp;
1835///
1836/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1837/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1838///
1839/// // You can destructure the result using array patterns
1840/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1841/// assert_eq!(min, 17);
1842/// assert_eq!(max, -42);
1843/// ```
1844#[inline]
1845#[must_use]
1846#[unstable(feature = "cmp_minmax", issue = "115939")]
1847#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1848pub const fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1849where
1850 F: [const] FnMut(&T) -> K + [const] Destruct,
1851 K: [const] Ord + [const] Destruct,
1852{
1853 if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1854}
1855
1856// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1857mod impls {
1858 use crate::cmp::Ordering::{self, Equal, Greater, Less};
1859 use crate::hint::unreachable_unchecked;
1860 use crate::marker::PointeeSized;
1861 use crate::ops::ControlFlow::{self, Break, Continue};
1862 use crate::panic::const_assert;
1863
1864 macro_rules! partial_eq_impl {
1865 ($($t:ty)*) => ($(
1866 #[stable(feature = "rust1", since = "1.0.0")]
1867 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1868 impl const PartialEq for $t {
1869 #[inline]
1870 fn eq(&self, other: &Self) -> bool { *self == *other }
1871 #[inline]
1872 fn ne(&self, other: &Self) -> bool { *self != *other }
1873 }
1874 )*)
1875 }
1876
1877 #[stable(feature = "rust1", since = "1.0.0")]
1878 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1879 impl const PartialEq for () {
1880 #[inline]
1881 fn eq(&self, _other: &()) -> bool {
1882 true
1883 }
1884 #[inline]
1885 fn ne(&self, _other: &()) -> bool {
1886 false
1887 }
1888 }
1889
1890 partial_eq_impl! {
1891 bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1892 }
1893
1894 macro_rules! eq_impl {
1895 ($($t:ty)*) => ($(
1896 #[stable(feature = "rust1", since = "1.0.0")]
1897 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1898 impl const Eq for $t {}
1899 )*)
1900 }
1901
1902 eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1903
1904 #[rustfmt::skip]
1905 macro_rules! partial_ord_methods_primitive_impl {
1906 () => {
1907 #[inline(always)]
1908 fn lt(&self, other: &Self) -> bool { *self < *other }
1909 #[inline(always)]
1910 fn le(&self, other: &Self) -> bool { *self <= *other }
1911 #[inline(always)]
1912 fn gt(&self, other: &Self) -> bool { *self > *other }
1913 #[inline(always)]
1914 fn ge(&self, other: &Self) -> bool { *self >= *other }
1915
1916 // These implementations are the same for `Ord` or `PartialOrd` types
1917 // because if either is NAN the `==` test will fail so we end up in
1918 // the `Break` case and the comparison will correctly return `false`.
1919
1920 #[inline]
1921 fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1922 let (lhs, rhs) = (*self, *other);
1923 if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1924 }
1925 #[inline]
1926 fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1927 let (lhs, rhs) = (*self, *other);
1928 if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1929 }
1930 #[inline]
1931 fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1932 let (lhs, rhs) = (*self, *other);
1933 if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1934 }
1935 #[inline]
1936 fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1937 let (lhs, rhs) = (*self, *other);
1938 if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1939 }
1940 };
1941 }
1942
1943 macro_rules! partial_ord_impl {
1944 ($($t:ty)*) => ($(
1945 #[stable(feature = "rust1", since = "1.0.0")]
1946 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1947 impl const PartialOrd for $t {
1948 #[inline]
1949 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1950 match (*self <= *other, *self >= *other) {
1951 (false, false) => None,
1952 (false, true) => Some(Greater),
1953 (true, false) => Some(Less),
1954 (true, true) => Some(Equal),
1955 }
1956 }
1957
1958 partial_ord_methods_primitive_impl!();
1959 }
1960 )*)
1961 }
1962
1963 #[stable(feature = "rust1", since = "1.0.0")]
1964 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1965 impl const PartialOrd for () {
1966 #[inline]
1967 fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1968 Some(Equal)
1969 }
1970 }
1971
1972 #[stable(feature = "rust1", since = "1.0.0")]
1973 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1974 impl const PartialOrd for bool {
1975 #[inline]
1976 fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1977 Some(self.cmp(other))
1978 }
1979
1980 partial_ord_methods_primitive_impl!();
1981 }
1982
1983 partial_ord_impl! { f16 f32 f64 f128 }
1984
1985 macro_rules! ord_impl {
1986 ($($t:ty)*) => ($(
1987 #[stable(feature = "rust1", since = "1.0.0")]
1988 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1989 impl const PartialOrd for $t {
1990 #[inline]
1991 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1992 Some(crate::intrinsics::three_way_compare(*self, *other))
1993 }
1994
1995 partial_ord_methods_primitive_impl!();
1996 }
1997
1998 #[stable(feature = "rust1", since = "1.0.0")]
1999 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2000 impl const Ord for $t {
2001 #[inline]
2002 fn cmp(&self, other: &Self) -> Ordering {
2003 crate::intrinsics::three_way_compare(*self, *other)
2004 }
2005
2006 #[inline]
2007 #[track_caller]
2008 fn clamp(self, min: Self, max: Self) -> Self
2009 {
2010 const_assert!(
2011 min <= max,
2012 "min > max",
2013 "min > max. min = {min:?}, max = {max:?}",
2014 min: $t,
2015 max: $t,
2016 );
2017 if self < min {
2018 min
2019 } else if self > max {
2020 max
2021 } else {
2022 self
2023 }
2024 }
2025 }
2026 )*)
2027 }
2028
2029 #[stable(feature = "rust1", since = "1.0.0")]
2030 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2031 impl const Ord for () {
2032 #[inline]
2033 fn cmp(&self, _other: &()) -> Ordering {
2034 Equal
2035 }
2036 }
2037
2038 #[stable(feature = "rust1", since = "1.0.0")]
2039 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2040 impl const Ord for bool {
2041 #[inline]
2042 fn cmp(&self, other: &bool) -> Ordering {
2043 // Casting to i8's and converting the difference to an Ordering generates
2044 // more optimal assembly.
2045 // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2046 match (*self as i8) - (*other as i8) {
2047 -1 => Less,
2048 0 => Equal,
2049 1 => Greater,
2050 // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2051 _ => unsafe { unreachable_unchecked() },
2052 }
2053 }
2054
2055 #[inline]
2056 fn min(self, other: bool) -> bool {
2057 self & other
2058 }
2059
2060 #[inline]
2061 fn max(self, other: bool) -> bool {
2062 self | other
2063 }
2064
2065 #[inline]
2066 fn clamp(self, min: bool, max: bool) -> bool {
2067 assert!(min <= max);
2068 self.max(min).min(max)
2069 }
2070 }
2071
2072 ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2073
2074 #[unstable(feature = "never_type", issue = "35121")]
2075 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2076 impl const PartialEq for ! {
2077 #[inline]
2078 fn eq(&self, _: &!) -> bool {
2079 *self
2080 }
2081 }
2082
2083 #[unstable(feature = "never_type", issue = "35121")]
2084 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2085 impl const Eq for ! {}
2086
2087 #[unstable(feature = "never_type", issue = "35121")]
2088 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2089 impl const PartialOrd for ! {
2090 #[inline]
2091 fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2092 *self
2093 }
2094 }
2095
2096 #[unstable(feature = "never_type", issue = "35121")]
2097 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2098 impl const Ord for ! {
2099 #[inline]
2100 fn cmp(&self, _: &!) -> Ordering {
2101 *self
2102 }
2103 }
2104
2105 // & pointers
2106
2107 #[stable(feature = "rust1", since = "1.0.0")]
2108 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2109 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2110 where
2111 A: [const] PartialEq<B>,
2112 {
2113 #[inline]
2114 fn eq(&self, other: &&B) -> bool {
2115 PartialEq::eq(*self, *other)
2116 }
2117 #[inline]
2118 fn ne(&self, other: &&B) -> bool {
2119 PartialEq::ne(*self, *other)
2120 }
2121 }
2122 #[stable(feature = "rust1", since = "1.0.0")]
2123 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2124 impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&B> for &A
2125 where
2126 A: [const] PartialOrd<B>,
2127 {
2128 #[inline]
2129 fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2130 PartialOrd::partial_cmp(*self, *other)
2131 }
2132 #[inline]
2133 fn lt(&self, other: &&B) -> bool {
2134 PartialOrd::lt(*self, *other)
2135 }
2136 #[inline]
2137 fn le(&self, other: &&B) -> bool {
2138 PartialOrd::le(*self, *other)
2139 }
2140 #[inline]
2141 fn gt(&self, other: &&B) -> bool {
2142 PartialOrd::gt(*self, *other)
2143 }
2144 #[inline]
2145 fn ge(&self, other: &&B) -> bool {
2146 PartialOrd::ge(*self, *other)
2147 }
2148 #[inline]
2149 fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2150 PartialOrd::__chaining_lt(*self, *other)
2151 }
2152 #[inline]
2153 fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2154 PartialOrd::__chaining_le(*self, *other)
2155 }
2156 #[inline]
2157 fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2158 PartialOrd::__chaining_gt(*self, *other)
2159 }
2160 #[inline]
2161 fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2162 PartialOrd::__chaining_ge(*self, *other)
2163 }
2164 }
2165 #[stable(feature = "rust1", since = "1.0.0")]
2166 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2167 impl<A: PointeeSized> const Ord for &A
2168 where
2169 A: [const] Ord,
2170 {
2171 #[inline]
2172 fn cmp(&self, other: &Self) -> Ordering {
2173 Ord::cmp(*self, *other)
2174 }
2175 }
2176 #[stable(feature = "rust1", since = "1.0.0")]
2177 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2178 impl<A: PointeeSized> const Eq for &A where A: [const] Eq {}
2179
2180 // &mut pointers
2181
2182 #[stable(feature = "rust1", since = "1.0.0")]
2183 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2184 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2185 where
2186 A: [const] PartialEq<B>,
2187 {
2188 #[inline]
2189 fn eq(&self, other: &&mut B) -> bool {
2190 PartialEq::eq(*self, *other)
2191 }
2192 #[inline]
2193 fn ne(&self, other: &&mut B) -> bool {
2194 PartialEq::ne(*self, *other)
2195 }
2196 }
2197 #[stable(feature = "rust1", since = "1.0.0")]
2198 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2199 impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&mut B> for &mut A
2200 where
2201 A: [const] PartialOrd<B>,
2202 {
2203 #[inline]
2204 fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2205 PartialOrd::partial_cmp(*self, *other)
2206 }
2207 #[inline]
2208 fn lt(&self, other: &&mut B) -> bool {
2209 PartialOrd::lt(*self, *other)
2210 }
2211 #[inline]
2212 fn le(&self, other: &&mut B) -> bool {
2213 PartialOrd::le(*self, *other)
2214 }
2215 #[inline]
2216 fn gt(&self, other: &&mut B) -> bool {
2217 PartialOrd::gt(*self, *other)
2218 }
2219 #[inline]
2220 fn ge(&self, other: &&mut B) -> bool {
2221 PartialOrd::ge(*self, *other)
2222 }
2223 #[inline]
2224 fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2225 PartialOrd::__chaining_lt(*self, *other)
2226 }
2227 #[inline]
2228 fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2229 PartialOrd::__chaining_le(*self, *other)
2230 }
2231 #[inline]
2232 fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2233 PartialOrd::__chaining_gt(*self, *other)
2234 }
2235 #[inline]
2236 fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2237 PartialOrd::__chaining_ge(*self, *other)
2238 }
2239 }
2240 #[stable(feature = "rust1", since = "1.0.0")]
2241 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2242 impl<A: PointeeSized> const Ord for &mut A
2243 where
2244 A: [const] Ord,
2245 {
2246 #[inline]
2247 fn cmp(&self, other: &Self) -> Ordering {
2248 Ord::cmp(*self, *other)
2249 }
2250 }
2251 #[stable(feature = "rust1", since = "1.0.0")]
2252 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2253 impl<A: PointeeSized> const Eq for &mut A where A: [const] Eq {}
2254
2255 #[stable(feature = "rust1", since = "1.0.0")]
2256 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2257 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2258 where
2259 A: [const] PartialEq<B>,
2260 {
2261 #[inline]
2262 fn eq(&self, other: &&mut B) -> bool {
2263 PartialEq::eq(*self, *other)
2264 }
2265 #[inline]
2266 fn ne(&self, other: &&mut B) -> bool {
2267 PartialEq::ne(*self, *other)
2268 }
2269 }
2270
2271 #[stable(feature = "rust1", since = "1.0.0")]
2272 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2273 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2274 where
2275 A: [const] PartialEq<B>,
2276 {
2277 #[inline]
2278 fn eq(&self, other: &&B) -> bool {
2279 PartialEq::eq(*self, *other)
2280 }
2281 #[inline]
2282 fn ne(&self, other: &&B) -> bool {
2283 PartialEq::ne(*self, *other)
2284 }
2285 }
2286}